Suppr超能文献

与肺功能测试相比,胸部CT成像用于鉴别正常、PRISm和慢性阻塞性肺疾病。

Chest CT imaging for differentiating normal, PRISm, and COPD in comparison with pulmonary function tests.

作者信息

Ma Zongjing, Sun Yingli, Ma Zhuangxuan, Zhang Ling, Cheng Fanzhi, Ma Haihong, Jin Liang, Li Ming

机构信息

Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China.

Department of Radiology, Fudan University Shanghai Cancer Centre, Shanghai, China.

出版信息

Radiol Med. 2025 Aug 21. doi: 10.1007/s11547-025-02061-4.

Abstract

BACKGROUND

Preserved ratio impaired spirometry (PRISm) and chronic obstructive pulmonary disease (COPD) are progressive respiratory disorders associated with accelerated pulmonary function decline and systemic comorbidities. This multicenter study aimed to develop a three-category classification model that integrates clinical variables with thoracic computed tomography (CT) radiomics to distinguish normal pulmonary function, PRISm, and COPD.

METHODS

A total of 1018 participants from three centers (A, B, C) who underwent chest CT and pulmonary function tests (PFTs) within a 2-week interval were retrospectively analyzed. After applying inclusion and exclusion criteria, 797 individuals were included for analysis (Center A: 667 [training/internal test = 534:133]; Centers B, C: 130 external test). CT images were preprocessed via resampling and intensity normalization, followed by semi-automated segmentation of the airway tree and whole lung parenchyma using Mimics Research. PyRadiomics extracted 2436 radiomic features (1218 per region). Feature selection combined maximum relevance minimum redundancy with least absolute shrinkage and selection operator regression, employing tenfold cross-validation. Five models were developed using multinomial logistic regression: (1) clinical model, (2) airway model, (3) lung model, (4) airway fusion model, and (5) lung fusion model. Performance metrics included accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and the area under the receiver operating characteristic curve (AUC), with DeLong tests comparing model efficacy.

RESULTS

35 airway tree and 48 lung radiomic features were ultimately selected. The best performing model was the lung fusion model, which integrated three clinical predictors (age, gender, and BMI) with selected lung radiomic features. In external test set, it achieved superior performance with AUCs of 0.939 (95% CI 0.898-0.979) for PFT-normal, 0.830 (0.758-0.902) for PRISm, and 0.904 (0.841-0.966) for COPD, with an overall accuracy of 83.59%. DeLong tests indicated that across all three datasets, the lung fusion model outperformed the other four models.

CONCLUSION

Combining age, gender, BMI, and lung radiomic features significantly improves detection of PRISm and COPD compared to alternative models. These findings underscore the potential of CT-based radiomics for the early identification and risk stratification of abnormal pulmonary function.

摘要

背景

保留比例受损肺功能测定(PRISm)和慢性阻塞性肺疾病(COPD)是与肺功能加速下降和全身合并症相关的进行性呼吸系统疾病。这项多中心研究旨在开发一种三类分类模型,该模型将临床变量与胸部计算机断层扫描(CT)影像组学相结合,以区分正常肺功能、PRISm和COPD。

方法

回顾性分析了来自三个中心(A、B、C)的总共1018名参与者,他们在2周内接受了胸部CT和肺功能测试(PFT)。应用纳入和排除标准后,纳入797人进行分析(中心A:667人[训练/内部测试=534:133];中心B、C:130人进行外部测试)。CT图像通过重采样和强度归一化进行预处理,然后使用Mimics Research对气道树和全肺实质进行半自动分割。PyRadiomics提取了2436个影像组学特征(每个区域1218个)。特征选择将最大相关性最小冗余与最小绝对收缩和选择算子回归相结合,采用十折交叉验证。使用多项逻辑回归开发了五个模型:(1)临床模型,(2)气道模型,(3)肺模型,(4)气道融合模型,和(5)肺融合模型。性能指标包括准确性、敏感性、特异性、阳性预测值、阴性预测值和受试者工作特征曲线下面积(AUC),使用DeLong检验比较模型效能。

结果

最终选择了35个气道树影像组学特征和48个肺影像组学特征。表现最佳的模型是肺融合模型,它将三个临床预测指标(年龄、性别和BMI)与选定的肺影像组学特征相结合。在外部测试集中,它表现出色,PFT正常组的AUC为0.939(95%CI 0.898-0.979),PRISm组为0.830(0.758-0.902),COPD组为0.904(0.841-0.966),总体准确率为83.59%。DeLong检验表明,在所有三个数据集中,肺融合模型均优于其他四个模型。

结论

与其他模型相比,结合年龄、性别、BMI和肺影像组学特征可显著提高PRISm和COPD的检测率。这些发现强调了基于CT的影像组学在异常肺功能早期识别和风险分层方面的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验