Chen Chongan, Uddin Zaheen, Lu Yiran, Sheng Can, Zhang Nianyao, Xie Haipeng, Li Junchi, Yuan Yongbo, Stathatos Elias, Ran Junhui, Yang Bin
College of Materials Science and Engineering, Hunan University, Changsha 410082, Hunan, China.
Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, Hunan, China.
ACS Appl Mater Interfaces. 2025 Sep 3;17(35):49639-49646. doi: 10.1021/acsami.5c14006. Epub 2025 Aug 22.
Semitransparent perovskite solar cells (ST-PSCs) are emerging as promising candidates for tandem architectures and building integrated photovoltaics. However, their development is constrained by a large open-circuit voltage () loss suffered from severe interfacial nonradiative recombination. Here, we propose surface molecular engineering employing tyramine hydrochloride (TACl) at the perovskite/C interface to concurrently passivate interfacial defects and optimize the energy-level alignment. Organic ammonium ions selectively passivate Pb-related defects while chloride ions compensate halide vacancies, collectively suppressing nonradiative recombination loss. This molecular engineering yields a wide-bandgap perovskite film with enhanced crystallinity and minimized defect density, facilitating efficient charge extraction and improved open-circuit voltage. The target semitransparent device achieved a remarkable power conversion efficiency (PCE) of 14.66% with an average visible light transmittance of 13.2%. Notably, the TACl-modified ST-PSCs showed remarkably enhanced stability in an air environment (RH = 30 ± 5%), maintaining nearly 82% of their initial PCE values after 720 h of aging, far exceeding the 54% retention of the control device. This work establishes a promising strategy for defect passivation and energy-level optimization of high-performance semitransparent perovskite solar cells.
半透明钙钛矿太阳能电池(ST-PSCs)正成为串联结构和建筑一体化光伏领域颇具潜力的候选者。然而,其发展受到严重界面非辐射复合导致的较大开路电压()损失的限制。在此,我们提出在钙钛矿/C界面采用盐酸酪胺(TACl)进行表面分子工程,以同时钝化界面缺陷并优化能级排列。有机铵离子选择性地钝化与铅相关的缺陷,而氯离子补偿卤化物空位,共同抑制非辐射复合损失。这种分子工程产生了具有增强结晶度和最小化缺陷密度的宽带隙钙钛矿薄膜,有利于高效电荷提取并提高开路电压。目标半透明器件实现了14.66%的显著功率转换效率(PCE),平均可见光透过率为13.2%。值得注意的是,TACl修饰的ST-PSCs在空气环境(RH = 30 ± 5%)中表现出显著增强的稳定性,老化720小时后保持其初始PCE值的近82%,远超过对照器件54%的保留率。这项工作为高性能半透明钙钛矿太阳能电池的缺陷钝化和能级优化建立了一种有前景的策略。