Zhang Ting, Zhao Rudai, Li Pengwei, Gu Peiwen, Shi Yapeng, Li Shuaishuai, Miao Zhipeng, Peng Sihui, Xie Yunhang, Liang Wenlong, Yu Jie, Liang Chao, Zhang Yiqiang, Song Yanlin
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China.
Sci Bull (Beijing). 2025 Jul 7. doi: 10.1016/j.scib.2025.07.003.
Perovskite tandem solar cells (TSCs) hold substantial promise for surpassing the efficiency limits of single-junction solar cells. Nevertheless, achieving high open-circuit voltage (V) in wide-bandgap perovskite devices remains a challenge due to significant V-losses. Here, we introduce a heterogeneous interface anchoring strategy aimed at enhancing interfacial properties by incorporating a silane coupling agent between the perovskite and hole transport layers. Trimethoxysilane (TMOS), an amphiphilic molecule, strengthens interfacial adhesion through enhanced chemical interactions, thereby promoting efficient hole extraction. Additionally, the terminal functional groups of TMOS molecules interact with lead ions, modulating the perovskite film crystallization and improving their overall quality. Devices treated with TMOS exhibit a marked reduction in non-radiative recombination, leading to a significant increase in V. Notably, 3-cyanopropyltrimethoxysilane (CN-TMOS) optimizes the uniformity and interfacial contact of the perovskite film, achieving a V of 1.345 V and a power conversion efficiency (PCE) of 19.69%. The corresponding V-loss, relative to the bandgap, is reduced to 0.425 V, one of the lowest values reported for wide-bandgap perovskite single-junction solar cells. Extending this strategy to all-perovskite TSCs, we achieve a PCE of 28.45% and exceptional operational stability, retaining over 90% of the initial efficiency after 500 h of continuous operation under 1 sun illumination.
钙钛矿叠层太阳能电池(TSCs)在突破单结太阳能电池效率极限方面具有巨大潜力。然而,由于显著的开路电压损失,在宽带隙钙钛矿器件中实现高开路电压(V)仍然是一个挑战。在此,我们引入一种异质界面锚固策略,旨在通过在钙钛矿和空穴传输层之间引入硅烷偶联剂来增强界面性能。三甲氧基硅烷(TMOS)是一种两亲性分子,通过增强化学相互作用来加强界面附着力,从而促进有效的空穴提取。此外,TMOS分子的末端官能团与铅离子相互作用,调节钙钛矿薄膜的结晶并提高其整体质量。经TMOS处理的器件非辐射复合显著减少,导致开路电压显著增加。值得注意的是,3-氰基丙基三甲氧基硅烷(CN-TMOS)优化了钙钛矿薄膜的均匀性和界面接触,实现了1.345 V的开路电压和19.69%的功率转换效率(PCE)。相对于带隙的相应开路电压损失降低至0.425 V,这是宽带隙钙钛矿单结太阳能电池报道的最低值之一。将该策略扩展到全钙钛矿TSCs,我们实现了28.45%的功率转换效率和出色的运行稳定性,在1个太阳光照下连续运行500小时后仍保持超过90%的初始效率。