Suppr超能文献

评估中年早期临床心血管参数和代谢指标与胱抑素C水平的关联。

Evaluating the Association of Clinical Cardiovascular Parameters and Metabolic Indices With Levels of Cystatin C in Early Middle Age.

作者信息

Ashour Laith, Jarrar Zeid, Alzoubi Ghada, Hamdan Samar, Heramas Rima, Alakhdar Dima, Abu Jeries Julie, Mishleb Areen, Marar Maher, Ayesh Layan, Abu Sirhan Lina A

机构信息

From the Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan.

Faculty of Medicine, The University of Jordan, Amman, Jordan.

出版信息

Crit Pathw Cardiol. 2025 Sep 1;24(3):e0386. doi: 10.1097/HPC.0000000000000386. Epub 2025 Feb 25.

Abstract

BACKGROUND

The pathophysiology of renal dysfunction requires population-based study. It is debatable in the literature whether cardiovascular metrics have an impact on cystatin C levels.

METHODS

Using public-use biomarkers data of The National Longitudinal Study of Adolescent to Adult Health (Add Health) Wave 5 data, we tested, after adjusting for age (range: 32-42), anthropometrics (body mass index, waist circumference, and arm circumference), hemoglobin A1C, low-density lipoprotein, triglyceride, smoking, and sex, the association of 5 clinical cardiovascular measures (systolic blood pressure, diastolic blood pressure, mean arterial pressure, pulse pressure, and pulse rate) with cystatin C levels. Multiple linear regression analysis with a design-based approach was employed for data analysis after log-transformation of cystatin C levels.

RESULTS

Our findings showed that there was no significant association between cystatin C levels and any of the previously mentioned cardiovascular parameters in this age group (P > 0.05). However, there was a significant association between cystatin C levels and age [exponentiated estimate (EE) (percent increase per unit) = 1.21; 95% confidence interval (CI) = 0.97-1.103, P < 0.0001], body mass index and waist circumference (EE = 0.702; 95% CI = 0.7-0.705, P < 0.0001), triglycerides level (EE = 0.02; 95% CI = 0.0199-0.0201, P = 0.01), smoking status [EE (compared with nonsmokers) = 8.98, 95% CI = 8.95-9.01, P < 0.0001], and female sex [EE (compared with males) = -5.92; 95% CI = -5.94 to -5.89, P < 0.0001].

CONCLUSIONS

Our findings clarify the impact of confounding factors, particularly age, on cystatin C levels. They also demonstrate how the significant correlation between cardiovascular parameters and cystatin C levels that were seen in earlier studies is largely affected by the age. Anthropometrics, age, lipid indices, and smoking should all be considered in clinical practice as possible reasons for increased cystatin C levels in otherwise healthy middle-aged individuals.

摘要

背景

肾功能不全的病理生理学需要基于人群的研究。心血管指标是否会影响胱抑素C水平在文献中存在争议。

方法

利用青少年到成人健康全国纵向研究(Add Health)第5波的公开生物标志物数据,在调整年龄(范围:32 - 42岁)、人体测量学指标(体重指数、腰围和臂围)、糖化血红蛋白、低密度脂蛋白、甘油三酯、吸烟状况和性别后,我们测试了5项临床心血管指标(收缩压、舒张压、平均动脉压、脉压和脉搏率)与胱抑素C水平之间的关联。在对胱抑素C水平进行对数转换后,采用基于设计的方法进行多元线性回归分析。

结果

我们的研究结果表明,在这个年龄组中,胱抑素C水平与上述任何心血管参数之间均无显著关联(P > 0.05)。然而,胱抑素C水平与年龄[指数估计值(EE)(每单位百分比增加) = 1.21;95%置信区间(CI) = 0.97 - 1.103,P < 0.0001]、体重指数和腰围(EE = 0.702;95% CI = 0.7 - 0.705,P < 0.0001)、甘油三酯水平(EE = 0.02;95% CI = 0.0199 - 0.0201,P = 0.01)、吸烟状况[EE(与不吸烟者相比) = 8.98,95% CI = 8.95 - 9.01,P < 0.0001]以及女性性别[EE(与男性相比) = -5.92;95% CI = -5.94至 -5.89,P < 0.0001]之间存在显著关联。

结论

我们的研究结果阐明了混杂因素,特别是年龄,对胱抑素C水平的影响。它们还表明,早期研究中观察到的心血管参数与胱抑素C水平之间的显著相关性在很大程度上受到年龄的影响。在临床实践中,人体测量学指标、年龄、血脂指标和吸烟状况均应被视为健康中年个体胱抑素C水平升高的可能原因。

相似文献

6
Antihypertensive withdrawal for the prevention of cognitive decline.停用抗高血压药物以预防认知功能减退。
Cochrane Database Syst Rev. 2016 Nov 1;11(11):CD011971. doi: 10.1002/14651858.CD011971.pub2.
7
Co-enzyme Q10 supplementation for the primary prevention of cardiovascular disease.补充辅酶Q10用于心血管疾病的一级预防。
Cochrane Database Syst Rev. 2014;2014(12):CD010405. doi: 10.1002/14651858.CD010405.pub2. Epub 2014 Dec 4.
8
Nutritional interventions for survivors of childhood cancer.儿童癌症幸存者的营养干预措施。
Cochrane Database Syst Rev. 2016 Aug 22;2016(8):CD009678. doi: 10.1002/14651858.CD009678.pub2.
10
Heated tobacco products for smoking cessation and reducing smoking prevalence.加热烟草制品戒烟和降低吸烟率。
Cochrane Database Syst Rev. 2022 Jan 6;1(1):CD013790. doi: 10.1002/14651858.CD013790.pub2.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验