Suppr超能文献

开发并实施一种用于在2019年冠状病毒病大流行期间优化产科护理资源的分娩预测工具:混合方法研究

Development and Implementation of a Birth Forecasting Tool to Optimize Resources in Obstetrical Care During the COVID-19 Pandemic: Mixed-Methods Study.

作者信息

Joosse Huibert-Jan, Jongsma Karin, Moes Marcel, Bloemenkamp Kitty W, Tiel Groenestege Wouter M, van Solinge Wouter W, Haitjema Saskia, Kok Maarten B

机构信息

Central Diagnostic Laboratory, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, Utrecht, 3584CX, The Netherlands, 31 88 755 0759.

Department of Bioethics & Health Humanities, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

出版信息

JMIR Pediatr Parent. 2025 Aug 22;8:e68284. doi: 10.2196/68284.

Abstract

BACKGROUND

Medical resource allocation is important to ensure availability of care, especially in challenging circumstances like a pandemic. In fields of unpredictable care demand such as obstetrics, forecasting may help manage scarce resources.

OBJECTIVE

The development, validation, and implementation of a regional birth forecasting tool to support obstetrical staff planning in the Utrecht region during the COVID-19 pandemic.

METHODS

We combined predicted birth dates retrieved from Saltro, a large regional primary care laboratory, with data from the Dutch national perinatal registry (Perined) and Statistics Netherlands for model development. We created and implemented an HTML tool visualizing these forecasts, which were discussed during the regional acute obstetric health care network meetings. Six months after implementation, we assessed the impact of the tool using an evaluative stakeholder meeting.

RESULTS

We achieved a performance accuracy (R) of 0.45, 0.61, and 0.67 (all actual number of births within 95% CI) forecasting the number of births in the region, pooled in 1-, 2-, and 3-weekly bins, respectively. After presenting these findings to stakeholders, we implemented a forecasting tool using the 2-week bin model. The evaluative stakeholder meeting proved that the tool improved communication, awareness of health care need, and collaborations among health care providers in the Utrecht region. Additionally, stakeholders identified additional applications, such as communication with patients and training of obstetric health care providers.

CONCLUSIONS

Implementation of a forecasting tool for the number of births based on available data across the health care system added value to obstetrical care by providing insight into care demand, and increasing communication, awareness, and collaboration between health care providers. Further research should aim at improving regional obstetric acute care by fostering data sharing in order to improve health care demand forecasts.

摘要

背景

医疗资源分配对于确保医疗服务的可及性至关重要,尤其是在大流行等具有挑战性的情况下。在产科等护理需求不可预测的领域,预测可能有助于管理稀缺资源。

目的

开发、验证并实施一种区域出生预测工具,以支持新冠疫情期间乌得勒支地区产科工作人员的规划。

方法

我们将从大型区域初级保健实验室Saltro获取的预测出生日期与荷兰国家围产期登记处(Perined)和荷兰统计局的数据相结合,用于模型开发。我们创建并实施了一个HTML工具来可视化这些预测,并在区域急性产科医疗保健网络会议上进行了讨论。实施六个月后,我们通过一次评估性利益相关者会议评估了该工具的影响。

结果

我们分别以1周、2周和3周为分组,预测该地区出生人数的性能准确率(R)分别为0.45、0.61和0.67(所有实际出生人数均在95%置信区间内)。向利益相关者展示这些结果后,我们采用2周分组模型实施了一种预测工具。评估性利益相关者会议证明,该工具改善了乌得勒支地区医疗服务提供者之间的沟通、对医疗保健需求的认识以及合作。此外,利益相关者还确定了其他应用,如与患者沟通以及对产科医疗保健提供者的培训。

结论

基于整个医疗系统的可用数据实施出生人数预测工具,通过深入了解护理需求以及加强医疗服务提供者之间的沟通、提高认识和促进合作,为产科护理增添了价值。进一步的研究应旨在通过促进数据共享来改善区域产科急性护理,以提高医疗保健需求预测的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf39/12373259/3aa0e6247a51/pediatrics-v8-e68284-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验