文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

DeepVelo:深度学习将 RNA 速度扩展到具有细胞特异性动力学的多谱系系统。

DeepVelo: deep learning extends RNA velocity to multi-lineage systems with cell-specific kinetics.

机构信息

Peter Munk Cardiac Center, University Health Network, Toronto, Ontario, Canada.

Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.

出版信息

Genome Biol. 2024 Jan 19;25(1):27. doi: 10.1186/s13059-023-03148-9.


DOI:10.1186/s13059-023-03148-9
PMID:38243313
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10799431/
Abstract

Existing RNA velocity estimation methods strongly rely on predefined dynamics and cell-agnostic constant transcriptional kinetic rates, assumptions often violated in complex and heterogeneous single-cell RNA sequencing (scRNA-seq) data. Using a graph convolution network, DeepVelo overcomes these limitations by generalizing RNA velocity to cell populations containing time-dependent kinetics and multiple lineages. DeepVelo infers time-varying cellular rates of transcription, splicing, and degradation, recovers each cell's stage in the differentiation process, and detects functionally relevant driver genes regulating these processes. Application to various developmental and pathogenic processes demonstrates DeepVelo's capacity to study complex differentiation and lineage decision events in heterogeneous scRNA-seq data.

摘要

现有的 RNA 速度估计方法强烈依赖于预先定义的动态和与细胞无关的恒定转录动力学速率,而这些假设在复杂和异质的单细胞 RNA 测序 (scRNA-seq) 数据中经常被违反。DeepVelo 使用图卷积网络克服了这些限制,它将 RNA 速度推广到包含时变动力学和多个谱系的细胞群体中。DeepVelo 推断转录、剪接和降解的时变细胞速率,恢复分化过程中每个细胞的阶段,并检测调节这些过程的功能相关的驱动基因。在各种发育和发病过程中的应用表明,DeepVelo 能够在异质 scRNA-seq 数据中研究复杂的分化和谱系决策事件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2596/10799431/fcbe07533435/13059_2023_3148_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2596/10799431/a09ef9f86e87/13059_2023_3148_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2596/10799431/8e0de220d381/13059_2023_3148_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2596/10799431/b59cb46587ef/13059_2023_3148_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2596/10799431/5c64ee576fa8/13059_2023_3148_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2596/10799431/07fe35a2fb76/13059_2023_3148_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2596/10799431/63235751c822/13059_2023_3148_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2596/10799431/fcbe07533435/13059_2023_3148_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2596/10799431/a09ef9f86e87/13059_2023_3148_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2596/10799431/8e0de220d381/13059_2023_3148_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2596/10799431/b59cb46587ef/13059_2023_3148_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2596/10799431/5c64ee576fa8/13059_2023_3148_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2596/10799431/07fe35a2fb76/13059_2023_3148_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2596/10799431/63235751c822/13059_2023_3148_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2596/10799431/fcbe07533435/13059_2023_3148_Fig7_HTML.jpg

相似文献

[1]
DeepVelo: deep learning extends RNA velocity to multi-lineage systems with cell-specific kinetics.

Genome Biol. 2024-1-19

[2]
A relay velocity model infers cell-dependent RNA velocity.

Nat Biotechnol. 2024-1

[3]
Cell cycle gene regulation dynamics revealed by RNA velocity and deep-learning.

Nat Commun. 2022-5-23

[4]
Application of Deep Learning on Single-cell RNA Sequencing Data Analysis: A Review.

Genomics Proteomics Bioinformatics. 2022-10

[5]
Generalizing RNA velocity to transient cell states through dynamical modeling.

Nat Biotechnol. 2020-12

[6]
scZAG: Integrating ZINB-Based Autoencoder with Adaptive Data Augmentation Graph Contrastive Learning for scRNA-seq Clustering.

Int J Mol Sci. 2024-5-29

[7]
Deep learning-based advances and applications for single-cell RNA-sequencing data analysis.

Brief Bioinform. 2022-1-17

[8]
BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes.

Genome Biol. 2019-8-12

[9]
A Guide to Trajectory Inference and RNA Velocity.

Methods Mol Biol. 2023

[10]
scDLC: a deep learning framework to classify large sample single-cell RNA-seq data.

BMC Genomics. 2022-7-12

引用本文的文献

[1]
GraphVelo allows for accurate inference of multimodal velocities and molecular mechanisms for single cells.

Nat Commun. 2025-8-22

[2]
Topological velocity inference from spatial transcriptomic data.

Nat Biotechnol. 2025-7-16

[3]
Paradigms, innovations, and biological applications of RNA velocity: a comprehensive review.

Brief Bioinform. 2025-7-2

[4]
TIVelo: RNA velocity estimation leveraging cluster-level trajectory inference.

Nat Commun. 2025-7-7

[5]
scDown: A Pipeline for Single-Cell RNA-Seq Downstream Analysis.

Int J Mol Sci. 2025-5-30

[6]
Integrating Dynamical Systems Modeling with Spatiotemporal scRNA-Seq Data Analysis.

Entropy (Basel). 2025-4-22

[7]
Cell2fate infers RNA velocity modules to improve cell fate prediction.

Nat Methods. 2025-4

[8]
Multivariate stochastic modeling for transcriptional dynamics with cell-specific latent time using SDEvelo.

Nat Commun. 2024-12-30

[9]
GraphVelo allows for accurate inference of multimodal velocities and molecular mechanisms for single cells.

bioRxiv. 2025-1-11

[10]
Storm: Incorporating transient stochastic dynamics to infer the RNA velocity with metabolic labeling information.

PLoS Comput Biol. 2024-11-18

本文引用的文献

[1]
A relay velocity model infers cell-dependent RNA velocity.

Nat Biotechnol. 2024-1

[2]
RNA velocity unraveled.

PLoS Comput Biol. 2022-9

[3]
Alevin-fry unlocks rapid, accurate and memory-frugal quantification of single-cell RNA-seq data.

Nat Methods. 2022-3

[4]
Mapping transcriptomic vector fields of single cells.

Cell. 2022-2-17

[5]
CellRank for directed single-cell fate mapping.

Nat Methods. 2022-2

[6]
Representation learning of RNA velocity reveals robust cell transitions.

Proc Natl Acad Sci U S A. 2021-12-7

[7]
Chromatin Velocity reveals epigenetic dynamics by single-cell profiling of heterochromatin and euchromatin.

Nat Biotechnol. 2022-2

[8]
RNA velocity-current challenges and future perspectives.

Mol Syst Biol. 2021-8

[9]
The Role of Neurod Genes in Brain Development, Function, and Disease.

Front Mol Neurosci. 2021-6-9

[10]
Spatial and cell type transcriptional landscape of human cerebellar development.

Nat Neurosci. 2021-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索