Peter Munk Cardiac Center, University Health Network, Toronto, Ontario, Canada.
Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.
Genome Biol. 2024 Jan 19;25(1):27. doi: 10.1186/s13059-023-03148-9.
Existing RNA velocity estimation methods strongly rely on predefined dynamics and cell-agnostic constant transcriptional kinetic rates, assumptions often violated in complex and heterogeneous single-cell RNA sequencing (scRNA-seq) data. Using a graph convolution network, DeepVelo overcomes these limitations by generalizing RNA velocity to cell populations containing time-dependent kinetics and multiple lineages. DeepVelo infers time-varying cellular rates of transcription, splicing, and degradation, recovers each cell's stage in the differentiation process, and detects functionally relevant driver genes regulating these processes. Application to various developmental and pathogenic processes demonstrates DeepVelo's capacity to study complex differentiation and lineage decision events in heterogeneous scRNA-seq data.
现有的 RNA 速度估计方法强烈依赖于预先定义的动态和与细胞无关的恒定转录动力学速率,而这些假设在复杂和异质的单细胞 RNA 测序 (scRNA-seq) 数据中经常被违反。DeepVelo 使用图卷积网络克服了这些限制,它将 RNA 速度推广到包含时变动力学和多个谱系的细胞群体中。DeepVelo 推断转录、剪接和降解的时变细胞速率,恢复分化过程中每个细胞的阶段,并检测调节这些过程的功能相关的驱动基因。在各种发育和发病过程中的应用表明,DeepVelo 能够在异质 scRNA-seq 数据中研究复杂的分化和谱系决策事件。
Nat Biotechnol. 2024-1
Nat Commun. 2022-5-23
Genomics Proteomics Bioinformatics. 2022-10
Nat Biotechnol. 2020-12
Brief Bioinform. 2022-1-17
Methods Mol Biol. 2023
BMC Genomics. 2022-7-12
Nat Biotechnol. 2025-7-16
Brief Bioinform. 2025-7-2
Nat Commun. 2025-7-7
Int J Mol Sci. 2025-5-30
Entropy (Basel). 2025-4-22
Nat Methods. 2025-4
Nat Biotechnol. 2024-1
PLoS Comput Biol. 2022-9
Cell. 2022-2-17
Nat Methods. 2022-2
Proc Natl Acad Sci U S A. 2021-12-7
Mol Syst Biol. 2021-8
Front Mol Neurosci. 2021-6-9
Nat Neurosci. 2021-8