Lederer Alex R, Leonardi Maxine, Talamanca Lorenzo, Bobrovskiy Daniil M, Herrera Antonio, Droin Colas, Khven Irina, Carvalho Hugo J F, Valente Alessandro, Dominguez Mantes Albert, Mulet Arabí Pau, Pinello Luca, Naef Felix, La Manno Gioele
Laboratory of Brain Development and Biological Data Science, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Laboratory of Computational and Systems Biology, Institute of Bioengineering, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Nat Methods. 2024 Dec;21(12):2271-2286. doi: 10.1038/s41592-024-02471-8. Epub 2024 Oct 31.
Across biological systems, cells undergo coordinated changes in gene expression, resulting in transcriptome dynamics that unfold within a low-dimensional manifold. While low-dimensional dynamics can be extracted using RNA velocity, these algorithms can be fragile and rely on heuristics lacking statistical control. Moreover, the estimated vector field is not dynamically consistent with the traversed gene expression manifold. To address these challenges, we introduce a Bayesian model of RNA velocity that couples velocity field and manifold estimation in a reformulated, unified framework, identifying the parameters of an explicit dynamical system. Focusing on the cell cycle, we implement VeloCycle to study gene regulation dynamics on one-dimensional periodic manifolds and validate its ability to infer cell cycle periods using live imaging. We also apply VeloCycle to reveal speed differences in regionally defined progenitors and Perturb-seq gene knockdowns. Overall, VeloCycle expands the single-cell RNA sequencing analysis toolkit with a modular and statistically consistent RNA velocity inference framework.
在整个生物系统中,细胞会经历基因表达的协调变化,从而导致转录组动力学在低维流形中展开。虽然可以使用RNA速度来提取低维动力学,但这些算法可能很脆弱,并且依赖于缺乏统计控制的启发式方法。此外,估计的向量场与遍历的基因表达流形在动力学上不一致。为了应对这些挑战,我们引入了一种RNA速度的贝叶斯模型,该模型在一个重新构建的统一框架中将速度场和流形估计结合起来,确定一个明确动力系统的参数。聚焦于细胞周期,我们实现了VeloCycle来研究一维周期流形上的基因调控动力学,并使用实时成像验证其推断细胞周期时长的能力。我们还应用VeloCycle揭示区域定义的祖细胞和Perturb-seq基因敲除中的速度差异。总体而言,VeloCycle通过一个模块化且统计上一致的RNA速度推断框架扩展了单细胞RNA测序分析工具包。