Ke Shaoqiu, Ge Mengyu, Zu Shengyan, Kang Jinyu, Wei Xiaohuan, Xu Xiaojia, Li Zhiming, Chen Yiliang, Liu Bin, Huang Zhiwei, Liu Guanzhou, Zhou Jinrong, Lin Jinfu, Li Fangbiao, Ke Shaoying
Key Laboratory of Light Field Manipulation and System Integration Applications in Fujian Province, College of Physics and Information Engineering, Minnan Normal University, Zhangzhou, 363000, China.
Small. 2025 Aug 23:e07077. doi: 10.1002/smll.202507077.
2D transition metal dichalcogenide WSe exhibits unique band structure tunability, and its van der Waals heterostructures with 3D semiconductors demonstrate significant potential for high-performance photodetection. However, inherent limitations (interface defects) in conventional thin-film transfer hinder their development. This study addresses interfacial defects and integration challenges in WSe-based 2D-3D heterojunction devices by proposing a GeSi diffusion barrier-mediated interfacial engineering strategy combined with dual-temperature-zone furnace-based in situ selenization, achieving controllable growth of high-quality WSe films on GeSi/Ge substrates. The WSe/GeSi/n-Ge 8 × 8 array photodetector fabricated by laser direct-writing lithography demonstrates distinct performance: broad spectral detection from 532 nm to 2200 nm with responsivity of 5.61 A/W and specific detectivity of 3.77 × 10 Jones at 1550 nm. The unique dual Schottky structure enables dual-exponential decay characteristics, delivering fast response times of 0.55/2.85 µs and 0.15/1.1 µs, along with high 3-dB cutoff frequencies of 234 and 374 kHz. The device simultaneously achieves short-wave infrared high-resolution imaging, polarization detection (dichroic ratio of 83.4 at 1550 nm), and high-speed data transmission, overcoming interface defect limitations of conventional transfer processes. This work establishes a technical paradigm for in situ large-scale integration of broad-spectrum, high-speed 2D,3D devices.
二维过渡金属二硫属化物WSe展现出独特的能带结构可调性,并且其与三维半导体形成的范德华异质结构在高性能光电探测方面显示出巨大潜力。然而,传统薄膜转移过程中固有的局限性(界面缺陷)阻碍了它们的发展。本研究通过提出一种锗硅扩散势垒介导的界面工程策略并结合基于双温区炉的原位硒化,解决了基于WSe的二维-三维异质结器件中的界面缺陷和集成挑战,实现了在锗硅/锗衬底上高质量WSe薄膜的可控生长。通过激光直写光刻制造的WSe/锗硅/n-Ge 8×8阵列光电探测器展现出独特性能:在532纳米至2200纳米范围内具有宽光谱探测能力,在1550纳米处响应度为5.61安/瓦,比探测率为3.77×10琼斯。独特的双肖特基结构具有双指数衰减特性,响应时间分别为0.55/2.85微秒和0.15/1.1微秒,同时具有234和374千赫的高3分贝截止频率。该器件同时实现了短波红外高分辨率成像、偏振探测(在1550纳米处二向色比为83.4)和高速数据传输,克服了传统转移工艺的界面缺陷限制。这项工作建立了一种用于广谱、高速二维、三维器件原位大规模集成的技术范式。