Suppr超能文献

基于Python驱动的拓扑建模对肺癌药物进行定量构效关系分析。

On QSPR analysis of pulmonary cancer drugs using python-driven topological modeling.

作者信息

Qin Huiling, Hussain Mazhar, Hanif Muhammad Farhan, Siddiqui Muhammad Kamran, Hussain Zahid, Fiidow Mohamed Abubakar

机构信息

Department of Rehabilitation Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.

Key Laboratory of Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases of Baise, Baise, Guangxi, China.

出版信息

Sci Rep. 2025 Feb 1;15(1):3965. doi: 10.1038/s41598-025-88419-0.

Abstract

In this paper, we discussed the role of topological descriptors in the QSPR modeling of pulmonary cancer drugs. Degree-based topological indices were computed using computational methods driven by Python that are mathematical representations of properties of molecules without physical measurement. These descriptors were analyzed through linear regression models using SPSS software to predict significant physicochemical properties like boiling point, flash point, molar refractivity, and polarizability. The results show excellent correlations between the computed indices and the observed properties, except for flash point, which ascertains the dependability of the approach in QSPR analysis. The integration of computational and mathematical chemistry will make it easier to evaluate drugs because it can assure consistent data for preclinical development. The paper also reveals specific indices that are superior to others regarding predictive accuracy, thus giving a basis for refining the models to suit the individual compound. This review sets the pace for establishing methodologies that are efficient in designing new and efficient treatments against cancer since it gives insight into the strengths and limitations of topological modeling. This work marked the transformation in accelerating the math involved in drug discovery to reduce such research costs.

摘要

在本文中,我们讨论了拓扑描述符在肺癌药物定量构效关系(QSPR)建模中的作用。基于度的拓扑指数是使用由Python驱动的计算方法计算得出的,这些方法是分子性质的数学表示,无需进行物理测量。使用SPSS软件通过线性回归模型对这些描述符进行分析,以预测诸如沸点、闪点、摩尔折射率和极化率等重要的物理化学性质。结果表明,除闪点外,计算得出的指数与观察到的性质之间具有极好的相关性,这确定了该方法在QSPR分析中的可靠性。计算化学与数学化学的结合将使药物评估更加容易,因为它可以确保临床前开发数据的一致性。本文还揭示了在预测准确性方面优于其他指数的特定指数,从而为改进模型以适应单个化合物提供了依据。这篇综述为建立高效设计新型抗癌有效疗法的方法奠定了基础,因为它深入了解了拓扑建模的优势和局限性。这项工作标志着在加速药物发现中所涉及的数学运算以降低此类研究成本方面的转变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fde/11787360/a4e7a8a157ba/41598_2025_88419_Fig1_HTML.jpg

相似文献

1
On QSPR analysis of pulmonary cancer drugs using python-driven topological modeling.
Sci Rep. 2025 Feb 1;15(1):3965. doi: 10.1038/s41598-025-88419-0.
2
Innovative approaches in QSPR modelling using topological indices for the development of cancer treatments.
PLoS One. 2025 Feb 21;20(2):e0317507. doi: 10.1371/journal.pone.0317507. eCollection 2025.
8
An estimation of physiochemical properties of bladder cancer drugs via degree-based chemical bonding topological descriptors.
J Biomol Struct Dyn. 2025 Mar;43(4):1665-1673. doi: 10.1080/07391102.2023.2292792. Epub 2023 Dec 14.

引用本文的文献

1
Predicting bone cancer drugs properties through topological indices and machine learning.
Sci Rep. 2025 Aug 24;15(1):31150. doi: 10.1038/s41598-025-16497-1.
3
Evaluation of antiarrhythmia drug through QSPR modeling and multi criteria decision analysis.
Sci Rep. 2025 Aug 9;15(1):29216. doi: 10.1038/s41598-025-14892-2.
6
A graph-based computational approach for modeling physicochemical properties in drug design.
Sci Rep. 2025 Jul 1;15(1):21170. doi: 10.1038/s41598-025-06624-3.
7
Predictive modelling and ranking: compounds through indices and multi-criteria decision-making techniques.
Front Chem. 2025 Apr 29;13:1580267. doi: 10.3389/fchem.2025.1580267. eCollection 2025.

本文引用的文献

1
Drug metabolism and transport mediated the hepatotoxicity of root: a review.
Drug Metab Rev. 2024 Nov;56(4):349-358. doi: 10.1080/03602532.2024.2405163. Epub 2024 Oct 1.
2
Screening and modification of (+)-germacrene A synthase for the production of the anti-tumor drug (-)-β-elemene in engineered Saccharomyces cerevisiae.
Int J Biol Macromol. 2024 Nov;279(Pt 4):135455. doi: 10.1016/j.ijbiomac.2024.135455. Epub 2024 Sep 10.
4
Fusion of shallow and deep features from F-FDG PET/CT for predicting EGFR-sensitizing mutations in non-small cell lung cancer.
Quant Imaging Med Surg. 2024 Aug 1;14(8):5460-5472. doi: 10.21037/qims-23-1028. Epub 2024 Jan 19.
5
On comparative analysis of a two dimensional star gold structure via regression models.
Sci Rep. 2024 Jul 8;14(1):15712. doi: 10.1038/s41598-024-66395-1.
6
A QSPR analysis and curvilinear regression models for various degree-based topological indices: Quinolone antibiotics.
Heliyon. 2024 Jun 11;10(12):e32397. doi: 10.1016/j.heliyon.2024.e32397. eCollection 2024 Jun 30.
8
Nanoenabled intracellular zinc bursting for efficacious reversal of gefitinib resistance in lung cancer.
Int J Biol Sci. 2024 May 19;20(8):3028-3045. doi: 10.7150/ijbs.95929. eCollection 2024.
10
Antitumor activity of afatinib in EGFR T790M-negative human oral cancer therapeutically targets mTOR/Mcl-1 signaling axis.
Cell Oncol (Dordr). 2025 Feb;48(1):123-138. doi: 10.1007/s13402-024-00962-6. Epub 2024 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验