Huang Zhigao, Chen Musheng, Zheng Shiyan
Department of Physics and Information Engineering, Quanzhou Normal University, Quanzhou, Fujian, China.
Front Artif Intell. 2025 Aug 7;8:1628943. doi: 10.3389/frai.2025.1628943. eCollection 2025.
We propose Spectral Momentum Integration (SMI), an optimization enhancement that processes gradients in both frequency and time domains. SMI applies the Fast Fourier Transform to selectively filter gradient frequency components before blending them with original gradients using an adaptive scheduling mechanism. Experiments on a character-level language model demonstrate that SMI can achieve inference acceleration while maintaining model performance. Our approach integrates with existing optimizers without modifying model architecture, though it introduces computational overhead and hyperparameter complexity. While our current validation is limited to small-scale experiments, SMI provides a proof-of-concept for incorporating frequency-domain processing into neural network optimization, suggesting potential for broader applications pending large-scale validation.
我们提出了频谱动量积分(SMI),这是一种优化增强方法,可在频域和时域中处理梯度。SMI应用快速傅里叶变换,在使用自适应调度机制将梯度频率分量与原始梯度混合之前,有选择地对其进行滤波。在字符级语言模型上进行的实验表明,SMI可以在保持模型性能的同时实现推理加速。我们的方法无需修改模型架构即可与现有优化器集成,不过它会带来计算开销和超参数复杂性。虽然我们目前的验证仅限于小规模实验,但SMI为将频域处理纳入神经网络优化提供了概念验证,表明在大规模验证之前有更广泛应用的潜力。