Suppr超能文献

用人工智能引导人类直觉推动数学发展。

Advancing mathematics by guiding human intuition with AI.

机构信息

DeepMind, London, UK.

University of Oxford, Oxford, UK.

出版信息

Nature. 2021 Dec;600(7887):70-74. doi: 10.1038/s41586-021-04086-x. Epub 2021 Dec 1.

Abstract

The practice of mathematics involves discovering patterns and using these to formulate and prove conjectures, resulting in theorems. Since the 1960s, mathematicians have used computers to assist in the discovery of patterns and formulation of conjectures, most famously in the Birch and Swinnerton-Dyer conjecture, a Millennium Prize Problem. Here we provide examples of new fundamental results in pure mathematics that have been discovered with the assistance of machine learning-demonstrating a method by which machine learning can aid mathematicians in discovering new conjectures and theorems. We propose a process of using machine learning to discover potential patterns and relations between mathematical objects, understanding them with attribution techniques and using these observations to guide intuition and propose conjectures. We outline this machine-learning-guided framework and demonstrate its successful application to current research questions in distinct areas of pure mathematics, in each case showing how it led to meaningful mathematical contributions on important open problems: a new connection between the algebraic and geometric structure of knots, and a candidate algorithm predicted by the combinatorial invariance conjecture for symmetric groups. Our work may serve as a model for collaboration between the fields of mathematics and artificial intelligence (AI) that can achieve surprising results by leveraging the respective strengths of mathematicians and machine learning.

摘要

数学实践包括发现模式和利用这些模式来制定和证明猜想,从而得出定理。自 20 世纪 60 年代以来,数学家们已经开始使用计算机来辅助发现模式和制定猜想,其中最著名的例子是 Birch 和 Swinnerton-Dyer 猜想,这是千禧年难题之一。在这里,我们提供了一些在机器学习的辅助下发现的纯数学新基本结果的例子,证明了机器学习可以帮助数学家发现新的猜想和定理。我们提出了一种使用机器学习来发现数学对象之间潜在模式和关系的方法,利用归因技术来理解这些关系,并利用这些观察结果来指导直觉并提出猜想。我们概述了这个机器学习指导的框架,并展示了它在纯数学不同领域的当前研究问题中的成功应用,在每种情况下都展示了它如何导致对重要开放问题的有意义的数学贡献:在纽结的代数和几何结构之间的新联系,以及对称群的组合不变性猜想所预测的候选算法。我们的工作可以作为数学和人工智能(AI)领域之间合作的模型,通过利用数学家和机器学习的各自优势,可以取得惊人的成果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cf6/8636249/ee6538217ce2/41586_2021_4086_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验