文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

由监督式机器学习驱动的活细胞高通量纳米流变学

High-Throughput Nanorheology of Living Cells Powered by Supervised Machine Learning.

作者信息

Tejedor Jaime R, Garcia Ricardo

机构信息

Instituto de Ciencia de Materiales de Madrid CSIC c/Sor Juana Inés de la Cruz 3 28049 Madrid Spain.

出版信息

Adv Intell Syst. 2025 Aug;7(8):2400867. doi: 10.1002/aisy.202400867. Epub 2025 Apr 15.


DOI:10.1002/aisy.202400867
PMID:40852088
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12370168/
Abstract

Atomic force microscopy (AFM) is extensively applied to measure the nanomechanical properties of living cells. Despite its popularity, some applications on mechanobiology are limited by the low throughput of the technique. Currently, the analysis of AFM-nanoindentation data is performed by model fitting. Model fitting is slow, data intensive, and prone to error. Herein, a supervised machine-learning regressor is developed for transforming AFM force-distance curves into nanorheological behavior. The method reduces the computational time required to process a force volume of a cell made of 2.62 × 10 curves from several hours to minutes. In fact, the regressor increases the throughput by 50-fold. The training and the validation of the regressor are performed by using theoretical curves derived from a contact mechanics model that combined power-law rheology with bottom effect corrections and functional data analysis. The regressor predicts the modulus and the fluidity coefficient of mammalian cells with a relative error below 4%.

摘要

原子力显微镜(AFM)被广泛应用于测量活细胞的纳米力学特性。尽管它很受欢迎,但一些力学生物学应用受到该技术低通量的限制。目前,AFM纳米压痕数据的分析是通过模型拟合进行的。模型拟合速度慢、数据量大且容易出错。在此,开发了一种监督式机器学习回归器,用于将AFM力-距离曲线转化为纳米流变行为。该方法将处理由2.62×10条曲线组成的细胞力体积所需的计算时间从数小时缩短至数分钟。实际上,该回归器将通量提高了50倍。回归器的训练和验证是通过使用从接触力学模型导出的理论曲线进行的,该模型将幂律流变学与底部效应校正和函数数据分析相结合。该回归器预测哺乳动物细胞的模量和流体系数时,相对误差低于4%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa0b/12370168/91308846f365/AISY-7-0-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa0b/12370168/63940540adf8/AISY-7-0-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa0b/12370168/d07e53b35b8b/AISY-7-0-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa0b/12370168/99a5961d0cd5/AISY-7-0-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa0b/12370168/82bac21049e2/AISY-7-0-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa0b/12370168/91308846f365/AISY-7-0-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa0b/12370168/63940540adf8/AISY-7-0-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa0b/12370168/d07e53b35b8b/AISY-7-0-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa0b/12370168/99a5961d0cd5/AISY-7-0-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa0b/12370168/82bac21049e2/AISY-7-0-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa0b/12370168/91308846f365/AISY-7-0-g002.jpg

相似文献

[1]
High-Throughput Nanorheology of Living Cells Powered by Supervised Machine Learning.

Adv Intell Syst. 2025-8

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Anterior Approach Total Ankle Arthroplasty with Patient-Specific Cut Guides.

JBJS Essent Surg Tech. 2025-8-15

[4]
Sexual Harassment and Prevention Training

2025-1

[5]
A New Measure of Quantified Social Health Is Associated With Levels of Discomfort, Capability, and Mental and General Health Among Patients Seeking Musculoskeletal Specialty Care.

Clin Orthop Relat Res. 2025-4-1

[6]
Selegiline for Alzheimer's disease.

Cochrane Database Syst Rev. 2003

[7]
[Volume and health outcomes: evidence from systematic reviews and from evaluation of Italian hospital data].

Epidemiol Prev. 2013

[8]
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.

Syst Rev. 2024-11-26

[9]
PyFMLab: Open-source software for atomic force microscopy microrheology data analysis.

Open Res Eur. 2024-7-24

[10]
Pharmacological treatment of children with gastro-oesophageal reflux.

Cochrane Database Syst Rev. 2014-11-24

引用本文的文献

[1]
Advances in nanomechanical property mapping by atomic force microscopy.

Nanoscale Adv. 2025-8-26

本文引用的文献

[1]
Precise Surface Profiling at the Nanoscale Enabled by Deep Learning.

Nano Lett. 2024-2-28

[2]
Emergence of nanoscale viscoelasticity from single cancer cells to established tumors.

Biomaterials. 2024-3

[3]
Deep Learning Image Recognition-Assisted Atomic Force Microscopy for Single-Cell Efficient Mechanics in Co-culture Environments.

Langmuir. 2024-1-9

[4]
Atomic force microscopy-mediated mechanobiological profiling of complex human tissues.

Biomaterials. 2023-12

[5]
Deep learning strategy for small dataset from atomic force microscopy mechano-imaging on macrophages phenotypes.

Front Bioeng Biotechnol. 2023-10-4

[6]
Coupled mechanical mapping and interference contrast microscopy reveal viscoelastic and adhesion hallmarks of monocyte differentiation into macrophages.

Nanoscale. 2023-7-27

[7]
Quantification of van der Waals forces in bimodal and trimodal AFM.

J Chem Phys. 2023-5-28

[8]
Application of self-organizing maps to AFM-based viscoelastic characterization of breast cancer cell mechanics.

Sci Rep. 2023-2-22

[9]
Frequency-dependent nanomechanical profiling for medical diagnosis.

Beilstein J Nanotechnol. 2022-12-9

[10]
Optimizing the accuracy of viscoelastic characterization with AFM force-distance experiments in the time and frequency domains.

Soft Matter. 2023-1-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索