Tejedor Jaime R, Garcia Ricardo
Instituto de Ciencia de Materiales de Madrid CSIC c/Sor Juana Inés de la Cruz 3 28049 Madrid Spain.
Adv Intell Syst. 2025 Aug;7(8):2400867. doi: 10.1002/aisy.202400867. Epub 2025 Apr 15.
Atomic force microscopy (AFM) is extensively applied to measure the nanomechanical properties of living cells. Despite its popularity, some applications on mechanobiology are limited by the low throughput of the technique. Currently, the analysis of AFM-nanoindentation data is performed by model fitting. Model fitting is slow, data intensive, and prone to error. Herein, a supervised machine-learning regressor is developed for transforming AFM force-distance curves into nanorheological behavior. The method reduces the computational time required to process a force volume of a cell made of 2.62 × 10 curves from several hours to minutes. In fact, the regressor increases the throughput by 50-fold. The training and the validation of the regressor are performed by using theoretical curves derived from a contact mechanics model that combined power-law rheology with bottom effect corrections and functional data analysis. The regressor predicts the modulus and the fluidity coefficient of mammalian cells with a relative error below 4%.
原子力显微镜(AFM)被广泛应用于测量活细胞的纳米力学特性。尽管它很受欢迎,但一些力学生物学应用受到该技术低通量的限制。目前,AFM纳米压痕数据的分析是通过模型拟合进行的。模型拟合速度慢、数据量大且容易出错。在此,开发了一种监督式机器学习回归器,用于将AFM力-距离曲线转化为纳米流变行为。该方法将处理由2.62×10条曲线组成的细胞力体积所需的计算时间从数小时缩短至数分钟。实际上,该回归器将通量提高了50倍。回归器的训练和验证是通过使用从接触力学模型导出的理论曲线进行的,该模型将幂律流变学与底部效应校正和函数数据分析相结合。该回归器预测哺乳动物细胞的模量和流体系数时,相对误差低于4%。
Adv Intell Syst. 2025-8
JBJS Essent Surg Tech. 2025-8-15
Cochrane Database Syst Rev. 2003
Open Res Eur. 2024-7-24
Cochrane Database Syst Rev. 2014-11-24
Nanoscale Adv. 2025-8-26
Nano Lett. 2024-2-28
Front Bioeng Biotechnol. 2023-10-4
J Chem Phys. 2023-5-28
Beilstein J Nanotechnol. 2022-12-9