Suppr超能文献

用于神经形态计算的高熵氧化物忆阻器:从材料工程到功能集成

High-Entropy Oxide Memristors for Neuromorphic Computing: From Material Engineering to Functional Integration.

作者信息

Yang Jia-Li, Tang Xin-Gui, Gu Xuan, Sun Qi-Jun, Tang Zhen-Hua, Li Wen-Hua, Jiang Yan-Ping

机构信息

School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.

Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.

出版信息

Nanomicro Lett. 2025 Aug 25;18(1):41. doi: 10.1007/s40820-025-01891-1.

Abstract

High-entropy oxides (HEOs) have emerged as a promising class of memristive materials, characterized by entropy-stabilized crystal structures, multivalent cation coordination, and tunable defect landscapes. These intrinsic features enable forming-free resistive switching, multilevel conductance modulation, and synaptic plasticity, making HEOs attractive for neuromorphic computing. This review outlines recent progress in HEO-based memristors across materials engineering, switching mechanisms, and synaptic emulation. Particular attention is given to vacancy migration, phase transitions, and valence-state dynamics-mechanisms that underlie the switching behaviors observed in both amorphous and crystalline systems. Their relevance to neuromorphic functions such as short-term plasticity and spike-timing-dependent learning is also examined. While encouraging results have been achieved at the device level, challenges remain in conductance precision, variability control, and scalable integration. Addressing these demands a concerted effort across materials design, interface optimization, and task-aware modeling. With such integration, HEO memristors offer a compelling pathway toward energy-efficient and adaptable brain-inspired electronics.

摘要

高熵氧化物(HEOs)已成为一类很有前景的忆阻材料,其特点是具有熵稳定的晶体结构、多价阳离子配位和可调节的缺陷态势。这些内在特性使得无形成电阻切换、多电平电导调制和突触可塑性成为可能,这使得高熵氧化物对神经形态计算具有吸引力。本综述概述了基于高熵氧化物的忆阻器在材料工程、切换机制和突触仿真方面的最新进展。特别关注空位迁移、相变和价态动力学——这些机制是在非晶和晶体系统中观察到的切换行为的基础。还研究了它们与神经形态功能(如短期可塑性和尖峰时间依赖学习)的相关性。虽然在器件层面已经取得了令人鼓舞的成果,但在电导精度、可变性控制和可扩展集成方面仍然存在挑战。应对这些挑战需要在材料设计、界面优化和任务感知建模方面共同努力。通过这种集成,高熵氧化物忆阻器为实现节能和适应性强的类脑电子学提供了一条引人注目的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee1b/12378895/5b6bc1af5f0a/40820_2025_1891_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验