Li Jidong, Zhao Wei, Fu Chenwei, Zhai Zhenpeng, Xu Pengfei, Diao Xinyuan, Guo Wanlin, Yin Jun
State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
Nat Commun. 2025 Aug 25;16(1):7911. doi: 10.1038/s41467-025-63195-7.
Biological nervous systems rely on distinct spiking frequencies across a wide range for perceiving, transmitting, processing, and executing information. Replicating this frequency range in an artificial neuron would facilitate the emulation of biosignal diversity but it remains challenging. Here, we develop an ion-electronic hybrid artificial neuron by compactly integrating a nonlinear electrochemical element with a solid-state memristor. This hybrid neuron employing a minimalist architecture exhibits a tunable spiking frequency spanning five orders of magnitude, significantly surpassing the capability of artificial neurons based on electronic devices. Notably, stimuli-dependent ion fluxes enable inherent afferent sensing of liquid flow, temperature, and chemical constituents, eliminating the need for separate, bulky sensors. Connection to biomotor nerves facilitates muscle actuation with frequency-regulated modes. The frequency encoding of a hybrid neuron array allows for the recognition of handwritten patterns. This hybrid neuron design, taking advantage of both ionic and electronic features, offers a promising approach for advanced e-skin and neurointerface technologies.
生物神经系统依靠广泛范围内不同的尖峰频率来感知、传输、处理和执行信息。在人工神经元中复制这个频率范围将有助于模拟生物信号多样性,但这仍然具有挑战性。在此,我们通过将一个非线性电化学元件与一个固态忆阻器紧密集成,开发出一种离子 - 电子混合人工神经元。这种采用极简架构的混合神经元展现出跨越五个数量级的可调尖峰频率,显著超越了基于电子设备的人工神经元的能力。值得注意的是,依赖刺激的离子通量实现了对液体流动、温度和化学成分的固有传入传感,无需单独的大型传感器。与生物运动神经的连接有助于以频率调节模式驱动肌肉。混合神经元阵列的频率编码能够实现对手写图案的识别。这种利用离子和电子特性的混合神经元设计,为先进的电子皮肤和神经接口技术提供了一种很有前景的方法。