Mahto Jai Krishna, Mishra Ishani, Jangid Kuldeep, Kumar Pravindra
Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, India.
J Bacteriol. 2025 Aug 12:e0022125. doi: 10.1128/jb.00221-25.
Phthalates such as isophthalate, phthalate, and terephthalate are widespread environmental pollutants with significant health and ecological impacts. KF1 initiates isophthalate degradation through a specialized two-component enzyme system composed of isophthalate dioxygenase (IPDO) and its cognate reductase, isophthalate dioxygenase reductase. Despite its environmental significance, the lack of structural insights into IPDO has hindered efforts to rationally redesign, optimize, and harness its chemistry. Here, we report the first crystal structures of substrate-free IPDO and its complex with isophthalate, revealing unique structural features that underpin its substrate specificity. Unlike related oxygenases, phthalate dioxygenase (αα) and terephthalate dioxygenase (αβ), IPDO adopts a trimer (α) architecture, with distinct active site residues tailored to isophthalate binding. The comparative structural analysis identified steric and electrostatic constraints-particularly involving residue V178-that preclude the binding of ortho- or para-substituted substrates. Leveraging these structural insights, we engineered IPDO variants with broadened substrate specificity. Notably, the V178A and F249H substitutions enabled the enzyme to degrade three regioisomers of phthalate (phthalate, isophthalate, and terephthalate) without diminishing its native activity against isophthalate. The catalytic turnover () of the V178A/F249H double mutant was found to be 4.8 ± 0.3, 4.9 ± 0.2, and 4.0 ± 0.2 s for isophthalate, terephthalate, and phthalate, respectively, demonstrating comparable catalytic efficiency for all three substrates. Overall, this work advances our understanding of the molecular mechanisms involved in isophthalate dihydroxylation and elucidates a rational engineering approach to expand the catalytic repertoire of IPDO for biotechnological and environmental applications.IMPORTANCEPhthalate pollution poses a major environmental concern due to its widespread use as plasticizers and its persistence in ecosystems. Microbial degradation of phthalates offers a sustainable solution for mitigating this contamination. Among the key enzymes involved, aromatic-ring-hydroxylating dioxygenases initiate the first critical step in phthalate breakdown. However, most known enzymes exhibit narrow substrate specificity, limiting their utility for degrading diverse phthalate isomers such as isophthalate, phthalate, and terephthalate. This research addresses a critical gap by elucidating the structural basis of substrate specificity in isophthalate dioxygenase and applying rational engineering to expand its catalytic range. By generating enzyme variants capable of degrading all three phthalate regioisomers, this work provides a blueprint for designing versatile biocatalysts tailored for pollutant detoxification.
间苯二甲酸酯、邻苯二甲酸酯和对苯二甲酸酯等邻苯二甲酸盐是广泛存在的环境污染物,对健康和生态具有重大影响。KF1通过由间苯二甲酸双加氧酶(IPDO)及其同源还原酶间苯二甲酸双加氧酶还原酶组成的特殊双组分酶系统启动间苯二甲酸酯的降解。尽管其具有环境意义,但缺乏对IPDO的结构见解阻碍了合理重新设计、优化和利用其化学性质的努力。在此,我们报告了无底物IPDO及其与间苯二甲酸酯复合物的首个晶体结构,揭示了支撑其底物特异性的独特结构特征。与相关加氧酶邻苯二甲酸双加氧酶(αα)和对苯二甲酸双加氧酶(αβ)不同,IPDO采用三聚体(α)结构,具有为间苯二甲酸酯结合量身定制的独特活性位点残基。比较结构分析确定了空间和静电限制——特别是涉及残基V178——这排除了邻位或对位取代底物的结合。利用这些结构见解,我们设计了具有拓宽底物特异性的IPDO变体。值得注意的是,V178A和F249H取代使该酶能够降解邻苯二甲酸酯的三种区域异构体(邻苯二甲酸酯、间苯二甲酸酯和对苯二甲酸酯),而不会降低其对间苯二甲酸酯的天然活性。发现V178A/F249H双突变体对间苯二甲酸酯、对苯二甲酸酯和邻苯二甲酸酯的催化周转率()分别为4.8±0.3、4.9±0.2和4.0±0.2 s,表明对所有三种底物具有可比的催化效率。总体而言,这项工作推进了我们对间苯二甲酸酯二羟基化所涉及分子机制的理解,并阐明了一种合理的工程方法,以扩大IPDO在生物技术和环境应用中的催化范围。重要性邻苯二甲酸酯污染因其作为增塑剂的广泛使用及其在生态系统中的持久性而成为一个主要的环境问题。邻苯二甲酸酯的微生物降解为减轻这种污染提供了一种可持续的解决方案。在涉及的关键酶中,芳香环羟基化双加氧酶启动了邻苯二甲酸酯分解的第一个关键步骤。然而,大多数已知酶表现出狭窄的底物特异性,限制了它们降解间苯二甲酸酯、邻苯二甲酸酯和对苯二甲酸酯等多种邻苯二甲酸酯异构体的效用。这项研究通过阐明间苯二甲酸双加氧酶底物特异性的结构基础并应用合理工程来扩大其催化范围,填补了一个关键空白。通过生成能够降解所有三种邻苯二甲酸酯区域异构体的酶变体,这项工作为设计用于污染物解毒的通用生物催化剂提供了蓝图。