Sahraeibelverdi Tayebeh, Shirazi Ahmad, Lee Miki, Li Haijun, Kwon Sung Eun, Wang Thomas D, Oldham Kenn R
Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 USA.
University of Michigan, Ann Arbor, MI 48109 USA; Apple Inc., Cupertino, CA 95014 USA.
IEEE ASME Trans Mechatron. 2025 Apr 4. doi: 10.1109/tmech.2025.3551545.
This article examines interdependent design of an optical path and a microelectromechanical system (MEMS) scanning mirror for a miniature, implantable fluorescence microscope with large working distance (WD). Linearized and numerical ray analyses are used to approximately decouple optical and mechanical functions during design. We then maximize scan rate in the scenario of high-NA focusing with a specified WD and field-of-view (FOV). To do so, dynamic rotational analysis is combined with a novel model for expected failure voltage of parametrically-resonant electrostatic MEMS scanning mirrors. Mirrors parameters are set to optimize mirror speed within constraints fixed by optical specifications, while compatible optical path is selected for small objective diameter. A prototype instrument achieving sub-cellular resolution up to approximately FOV at up to WD is validated on imaging targets and excised mouse brain tissue.
本文研究了一种用于具有大工作距离(WD)的微型可植入荧光显微镜的光路与微机电系统(MEMS)扫描镜的相互依存设计。在设计过程中,使用线性化和数值光线分析来近似解耦光学和机械功能。然后,在具有指定工作距离(WD)和视场(FOV)的高数值孔径聚焦场景下,我们最大化扫描速率。为此,将动态旋转分析与参数共振静电MEMS扫描镜预期失效电压的新模型相结合。在由光学规格确定的约束范围内设置镜子参数以优化镜子速度,同时选择兼容的光路以实现小物镜直径。一种在高达WD的情况下实现高达约FOV的亚细胞分辨率的原型仪器在成像目标和切除的小鼠脑组织上得到了验证。