Tang Ruifeng, Zhang Yifan, Yang Yang, Zhang Chuanli, Yu Xun, Wang Yuan, Long Xiao, Jiang Pengfei, Gong Tiancheng, Wang Yan, Wei Wei, Luo Qing
State Key Laboratory of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China.
School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing 100029, China.
ACS Appl Mater Interfaces. 2025 Aug 27. doi: 10.1021/acsami.5c08743.
The discovery of ferroelectricity in hafnium oxide (HfO) thin films has positioned it as a leading material for next-generation nonvolatile memory. However, the integration of HfO-based ferroelectric thin films into back-end-of-line (BEOL) processes remains challenging due to the high thermal budget required to stabilize the ferroelectric orthorhombic (O) phase. In this work, we achieve robust stabilization of the O-phase at a significantly reduced annealing temperature of 300 °C solely through oxygen vacancy engineering. We introduce a region-selective oxygen vacancy engineering strategy to form oxygen vacancy engineering layers (Vo-ELs) within HfZrO (HZO) thin films during atomic layer deposition (ALD). By delaying the introduction of the oxygen precursor, multiple cycles of metal precursors are deposited before a single oxidation step, creating well-defined Vo-ELs. These Vo-ELs induce a vertical gradient in the oxygen vacancy concentration, as confirmed by electron energy loss spectroscopy (EELS). First-principles calculations further reveal that oxygen vacancies reduce the energy barrier for the tetragonal-to-orthorhombic (T-O) phase transition and enhance the thermodynamic stability of the ferroelectric O-phase. Utilizing this technique, we successfully realize low-temperature (300 °C) fabrication of HZO ferroelectric capacitors, which exhibit a high remanent polarization of 36.4 μC/cm and outstanding endurance exceeding 10 cycles. This work demonstrates the effectiveness of Vo-ELs in enabling low-thermal-budget, high-performance ferroelectric devices compatible with advanced BEOL integration.
氧化铪(HfO)薄膜中铁电性的发现使其成为下一代非易失性存储器的领先材料。然而,由于稳定铁电正交(O)相所需的高热预算,将基于HfO的铁电薄膜集成到后端(BEOL)工艺中仍然具有挑战性。在这项工作中,我们仅通过氧空位工程在300°C的显著降低的退火温度下实现了O相的稳健稳定。我们引入了一种区域选择性氧空位工程策略,在原子层沉积(ALD)过程中在HfZrO(HZO)薄膜内形成氧空位工程层(Vo-ELs)。通过延迟氧前驱体的引入,在单个氧化步骤之前沉积多个金属前驱体循环,从而创建明确的Vo-ELs。电子能量损失谱(EELS)证实,这些Vo-ELs在氧空位浓度中诱导垂直梯度。第一性原理计算进一步表明,氧空位降低了四方相到正交相(T-O)转变的能垒,并增强了铁电O相的热力学稳定性。利用该技术,我们成功实现了HZO铁电电容器的低温(300°C)制造,其具有36.4 μC/cm的高剩余极化和超过10次循环的出色耐久性。这项工作证明了Vo-ELs在实现与先进BEOL集成兼容的低热预算、高性能铁电器件方面的有效性。