文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于乳腺癌诊疗的工程化上转换纳米粒子

Engineered upconversion nanoparticles for breast cancer theranostics.

作者信息

Wang Shijing, Zhang Lei, Wang Minghao, Yin Xiumei, Dong Xinyao, Wu Xingyu, Li Weijie, Xu Wen, Mao Xiaoyun

机构信息

Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110000, China.

Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, Liaoning Province, 116600, China.

出版信息

Theranostics. 2025 Jul 25;15(16):8259-8319. doi: 10.7150/thno.116153. eCollection 2025.


DOI:10.7150/thno.116153
PMID:40860139
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12374582/
Abstract

Breast cancer (BC) remains the most prevalent cancer among women and a leading cause of cancer-related mortality worldwide, posing a significant threat to public health. Rare earth (RE)-doped upconversion nanoparticles (UCNPs) have emerged as a promising nanoplatform for BC management, owing to their exceptional photophysical properties and design flexibility. Unlike conventional fluorescent probes, engineered UCNPs absorb near-infrared (NIR) light, enabling deep tissue penetration while mitigating tissue damage and spontaneous fluorescence interference. Furthermore, through core-shell structure engineering and functionalization, multiple diagnostic and therapeutic modules can be integrated within a single NP, enabling theranostic applications for BC. This review comprehensively summarizes recent advances in engineered UCNPs for BC theranostics. It begins by introducing the luminescence mechanisms, controllable synthesis methods, and surface modification strategies of UCNPs. Next, it explores the fundamental biological effects of UCNPs, including biodistribution, metabolic pathways, and biotoxicity. Subsequently, we systematically review applications of engineered UCNPs in BC molecular imaging, biomarker detection, phototherapy, smart drug/gene delivery, and immunotherapy. Finally, current challenges and clinical translation prospects of UCNPs are discussed.

摘要

乳腺癌(BC)仍是全球女性中最常见的癌症,也是癌症相关死亡的主要原因,对公众健康构成重大威胁。稀土(RE)掺杂的上转换纳米粒子(UCNPs)因其卓越的光物理性质和设计灵活性,已成为一种有前景的乳腺癌治疗纳米平台。与传统荧光探针不同,工程化的UCNPs吸收近红外(NIR)光,能够实现深层组织穿透,同时减轻组织损伤和自发荧光干扰。此外,通过核壳结构工程和功能化,多个诊断和治疗模块可以整合到单个纳米粒子中,实现乳腺癌的诊疗一体化应用。本综述全面总结了工程化UCNPs在乳腺癌诊疗方面的最新进展。首先介绍了UCNPs的发光机制、可控合成方法和表面修饰策略。接下来,探讨了UCNPs的基本生物学效应,包括生物分布、代谢途径和生物毒性。随后,我们系统回顾了工程化UCNPs在乳腺癌分子成像、生物标志物检测、光疗、智能药物/基因递送和免疫治疗中的应用。最后,讨论了UCNPs目前面临的挑战和临床转化前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/10d189af1cb4/thnov15p8259g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/e9fe7c2b5566/thnov15p8259g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/04b118a06ec2/thnov15p8259g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/a0597d0010c9/thnov15p8259g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/2cc47cc24100/thnov15p8259g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/10245664495a/thnov15p8259g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/a8e3cd64124c/thnov15p8259g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/bdf42fe02cc5/thnov15p8259g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/63d3b8901d1e/thnov15p8259g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/8ce1148507d9/thnov15p8259g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/0a98a2e27643/thnov15p8259g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/273be1ac79a3/thnov15p8259g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/dbecfaefcaeb/thnov15p8259g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/141645a7f1d2/thnov15p8259g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/8c7b60f5364c/thnov15p8259g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/f78668012e95/thnov15p8259g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/2f6b537303c6/thnov15p8259g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/92406c96d6d8/thnov15p8259g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/c867cb7858a9/thnov15p8259g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/10d189af1cb4/thnov15p8259g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/e9fe7c2b5566/thnov15p8259g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/04b118a06ec2/thnov15p8259g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/a0597d0010c9/thnov15p8259g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/2cc47cc24100/thnov15p8259g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/10245664495a/thnov15p8259g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/a8e3cd64124c/thnov15p8259g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/bdf42fe02cc5/thnov15p8259g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/63d3b8901d1e/thnov15p8259g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/8ce1148507d9/thnov15p8259g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/0a98a2e27643/thnov15p8259g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/273be1ac79a3/thnov15p8259g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/dbecfaefcaeb/thnov15p8259g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/141645a7f1d2/thnov15p8259g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/8c7b60f5364c/thnov15p8259g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/f78668012e95/thnov15p8259g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/2f6b537303c6/thnov15p8259g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/92406c96d6d8/thnov15p8259g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/c867cb7858a9/thnov15p8259g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6841/12374582/10d189af1cb4/thnov15p8259g019.jpg

相似文献

[1]
Engineered upconversion nanoparticles for breast cancer theranostics.

Theranostics. 2025-7-25

[2]
Recent Progress on Rare-Earth-Doped Upconversion Nanomaterials for Bioassay Applications.

Biosensors (Basel). 2025-5-23

[3]
Recent progress of UCNPs-MoS nanocomposites as a platform for biological applications.

J Mater Chem B. 2024-5-29

[4]
Near-infrared-driven upconversion nanoparticles with photocatalysts through water-splitting towards cancer treatment.

J Mater Chem B. 2024-4-24

[5]
Photothermal applications of upconversion nanoparticles.

RSC Adv. 2025-6-25

[6]
Application of Metal-Organic Frameworks Nanoparticles in the Diagnosis and Treatment of Breast Cancer.

Int J Nanomedicine. 2025-8-22

[7]
Gold-Enhanced Lanthanide Nanomedicine for Near-Infrared Photodynamic Therapy.

Langmuir. 2025-7-29

[8]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[9]
Near-Infrared Light-Triggered Construction of 3D "Fishing Net" Polymer Networks Using Upconversion Nanoparticles for Tumor Therapy.

ACS Nano. 2025-7-1

[10]
Composite Nanomaterials of Conjugated Polymers and Upconversion Nanoparticles for NIR-Triggered Photodynamic/Photothermal Synergistic Cancer Therapy.

ACS Appl Mater Interfaces. 2023-11-17

本文引用的文献

[1]
Impact of Tissue Thickness on Computational Quantification of Features in Whole Slide Images for Diagnostic Pathology.

Endocr Pathol. 2025-4-8

[2]
NIR light activates upconverting nanoparticles/ZnMnS core-shell nanoparticles for improved breast cancer treatment.

Nanoscale. 2025-4-3

[3]
Upconversion Nanoparticle-Covalent Organic Framework Core-shell Particles as Therapeutic Microrobots Trackable With Optoacoustic Imaging.

Adv Mater. 2025-3-7

[4]
Global patterns and trends in breast cancer incidence and mortality across 185 countries.

Nat Med. 2025-4

[5]
Breast cancer: pathogenesis and treatments.

Signal Transduct Target Ther. 2025-2-19

[6]
Li-Based Nanoprobes with Boosted Photoluminescence for Temperature Visualization in NIR Imaging-Guided Drug Release.

Nano Lett. 2025-1-15

[7]
Development and Validation of a Nomogram for Axillary Lymph Node Metastasis Risk in Breast Cancer.

J Cancer. 2024-10-7

[8]
Systematic optimization of UCNPs-LFA for Helicobacter pylori nucleic acid detection at point-of-care.

Mikrochim Acta. 2024-10-7

[9]
Advances in the delivery of anticancer drugs by nanoparticles and chitosan-based nanoparticles.

Int J Pharm X. 2024-8-28

[10]
Synergistic Toxicity of Pollutant and Ultraviolet Exposure from a Mitochondrial Perspective.

Int J Mol Sci. 2024-8-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索