Sardar Haseeba, Noor Fatima, Shah Syed Muhammad Mukarram, Khan Ashraf Ullah, Al-Otaibi Jamelah S, Hadi Fazal, Daglia Maria, Khan Haroon
Department of Pharmacy, Abdul Wali Khan University, Mardan - Pakistan.
Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore - Pakistan.
Drug Target Insights. 2025 Aug 21;19:71-90. doi: 10.33393/dti.2025.3495. eCollection 2025 Jan-Dec.
Diabetes mellitus (DM), particularly type 2 DM (T2DM), is a chronic metabolic disorder requiring novel therapeutic approaches as the available therapies are not meeting the current challenges. This study investigates the anti-diabetic potential of Vigna unguiculata using a network pharmacology approach, supported by and analyses.
The plant was collected from Khyber Pakhtunkhwa, Pakistan, and subjected to hydroalcoholic extraction and fractionation. assays included α-amylase, α-glucosidase, and aldose reductase. Target prediction using STITCH and SwissTargetPrediction identified 88 common genes linked to T2DM. Protein-protein interaction (PPI) network analysis highlighted key genes like EGFR, PTGS2, and TLR4 as central nodes in diabetes-related pathways. Molecular docking was used to study the binding affinities of compounds.
IC50 values were determined using IBM SPSS Statistics 21 software. The data underwent analysis using one-way ANOVA followed by Dunnett's multiple comparison test. Significance value was determined at *p 0.05, **p 0.01 and ***p 0.001. In-vitro assays demonstrated significant α-amylase, α-glucosidase, and aldose reductase inhibitory activities. Phytochemical screening identified several bioactive compounds. Functional annotation and KEGG pathway analysis confirmed these genes' roles in crucial metabolic pathways. Virtual screening revealed strong binding affinities of compounds like Stigmasterol, Luteoline, and Quercetin with GSK3B, PTGS2, and TLR4. The Molecular Dynamics (MD) simulation, binding free energy calculations (MM-PBSA and MM-GBSA), confirmed the results of Virtual screening.
In short, these findings underscore as a promising source for anti-diabetic agents, supporting further clinical trials for T2DM management.
糖尿病(DM),尤其是2型糖尿病(T2DM),是一种慢性代谢紊乱疾病,由于现有疗法无法应对当前挑战,因此需要新的治疗方法。本研究采用网络药理学方法,并辅以实验分析,研究豇豆的抗糖尿病潜力。
该植物采自巴基斯坦开伯尔-普赫图赫瓦省,进行水醇提取和分离。实验包括α-淀粉酶、α-葡萄糖苷酶和醛糖还原酶检测。使用STITCH和SwissTargetPrediction进行靶点预测,确定了88个与T2DM相关的常见基因。蛋白质-蛋白质相互作用(PPI)网络分析突出了表皮生长因子受体(EGFR)、环氧化酶2(PTGS2)和Toll样受体4(TLR4)等关键基因作为糖尿病相关途径的中心节点。分子对接用于研究化合物的结合亲和力。
使用IBM SPSS Statistics 21软件确定半数抑制浓度(IC50)值。数据采用单因素方差分析,随后进行邓尼特多重比较检验。显著性值确定为p < 0.05,p < 0.01和p < 0.001。体外实验表明具有显著的α-淀粉酶、α-葡萄糖苷酶和醛糖还原酶抑制活性。植物化学筛选鉴定出几种生物活性化合物。功能注释和京都基因与基因组百科全书(KEGG)途径分析证实了这些基因在关键代谢途径中的作用。虚拟筛选显示豆甾醇、木犀草素和槲皮素等化合物与糖原合成酶激酶3β(GSK3B)、环氧化酶2(PTGS2)和Toll样受体4(TLR4)具有很强的结合亲和力。分子动力学(MD)模拟、结合自由能计算(MM-PBSA和MM-GBSA)证实了虚拟筛选的结果。
简而言之,这些发现强调豇豆是抗糖尿病药物的一个有前景的来源,支持进一步开展T2DM管理的临床试验。