Farhat Hassan, Alinier Guillaume, Khedhiri Rafik, Ramos Jerome, Derbel Emna, Rekik Fatma Babay Ep, Ranjith Abraham, Khnissi Mohamed, Kerkeni Habib, Khenissi Mohamed Chaker, Al-Yafei Ali, Al Shaikh Loua, Laughton James
Ambulance Service, Hamad Medical Corporation, PO Box 3050, Doha, Qatar.
Faculty of Medicine "Ibn El Jazzar", University of Sousse, 4000, Sousse, Tunisia.
Qatar Med J. 2025 Aug 22;2025(3):75. doi: 10.5339/qmj.2025.75. eCollection 2025.
Ambulance collisions pose a significant occupational risk to personnel, patients, and the public. Despite ongoing efforts to improve safety measures, the complex nature of emergency response operations continues to pose challenges in reducing collision risks.
This study investigates the role of the dedicated Vehicle Collisions Review Panel at Hamad Medical Corporation Ambulance Service (HMCAS) in identifying, understanding, and managing risks associated with ambulance collisions.
A retrospective quantitative analysis of HMCAS ambulance collision records from 2023 was conducted using descriptive and bivariate analyses, along with supervised and unsupervised machine learning (ML) techniques - including multinomial logistic regression (MLR), decision tree (DT) analysis, association rule mining (ARM), and time series forecasting - to uncover hidden patterns, predictive insights, and future projections.
A total of 131 ambulance collisions were analyzed. The majority of incidents involved emergency urban ambulances. MLR and DT achieved prediction accuracies of 41% and 35%, respectively. ARM revealed significant association between daytime incidents, normal road conditions, and the absence of patient involvement. Time series forecasting predicted a gradual increase followed by stabilization in collision incidents.
This study highlights the crucial role of a dedicated collision review panel in managing and mitigating ambulance collision risks. ML techniques provided evidence-based support for decision-making. Future research is needed to evaluate the long-term impacts of targeted training programs and safety protocols.
救护车碰撞对工作人员、患者和公众构成重大职业风险。尽管一直在努力改进安全措施,但应急响应行动的复杂性在降低碰撞风险方面仍然带来挑战。
本研究调查了哈马德医疗公司救护车服务部(HMCAS)专门的车辆碰撞审查小组在识别、理解和管理与救护车碰撞相关风险方面的作用。
对HMCAS 2023年救护车碰撞记录进行回顾性定量分析,采用描述性和双变量分析,以及监督和无监督机器学习(ML)技术——包括多项逻辑回归(MLR)、决策树(DT)分析、关联规则挖掘(ARM)和时间序列预测——以发现隐藏模式、预测性见解和未来预测。
共分析了131起救护车碰撞事件。大多数事件涉及城市应急救护车。MLR和DT的预测准确率分别为41%和35%。ARM揭示了白天事件、正常道路状况与无患者参与之间的显著关联。时间序列预测表明碰撞事件将逐渐增加,随后趋于稳定。
本研究强调了专门的碰撞审查小组在管理和减轻救护车碰撞风险方面的关键作用。ML技术为决策提供了基于证据的支持。需要进一步研究以评估有针对性的培训计划和安全协议的长期影响。