MACE-OFF:用于有机分子的短程可转移机器学习力场
MACE-OFF: Short-Range Transferable Machine Learning Force Fields for Organic Molecules.
作者信息
Kovács Dávid Péter, Moore J Harry, Browning Nicholas J, Batatia Ilyes, Horton Joshua T, Pu Yixuan, Kapil Venkat, Witt William C, Magdău Ioan-Bogdan, Cole Daniel J, Csányi Gábor
机构信息
Engineering Laboratory, University of Cambridge, Cambridge CB2 1PZ, U.K.
Ångström AI, 2325 Third Street, San Francisco, California 94107, United States.
出版信息
J Am Chem Soc. 2025 May 28;147(21):17598-17611. doi: 10.1021/jacs.4c07099. Epub 2025 May 19.
Classical empirical force fields have dominated biomolecular simulations for over 50 years. Although widely used in drug discovery, crystal structure prediction, and biomolecular dynamics, they generally lack the accuracy and transferability required for first-principles predictive modeling. In this paper, we introduce MACE-OFF, a series of short-range transferable force fields for organic molecules created using state-of-the-art machine learning technology and first-principles reference data computed with a high level of quantum mechanical theory. MACE-OFF demonstrates the remarkable capabilities of short-range models by accurately predicting a wide variety of gas- and condensed-phase properties of molecular systems. It produces accurate, easy-to-converge dihedral torsion scans of unseen molecules as well as reliable descriptions of molecular crystals and liquids, including quantum nuclear effects. We further demonstrate the capabilities of MACE-OFF by determining free energy surfaces in explicit solvent as well as the folding dynamics of peptides and nanosecond simulations of a fully solvated protein. These developments enable first-principles simulations of molecular systems for the broader chemistry community at high accuracy and relatively low computational cost.
经典经验力场在生物分子模拟领域占据主导地位已逾50年。尽管其在药物发现、晶体结构预测和生物分子动力学中被广泛应用,但通常缺乏第一性原理预测建模所需的准确性和可转移性。在本文中,我们介绍了MACE - OFF,这是一系列用于有机分子的短程可转移力场,它利用最先进的机器学习技术和通过高水平量子力学理论计算得到的第一性原理参考数据创建而成。MACE - OFF通过准确预测分子系统的各种气相和凝聚相性质,展示了短程模型的卓越能力。它能对未见分子生成准确且易于收敛的二面角扭转扫描,还能对分子晶体和液体进行可靠描述,包括量子核效应。我们通过在显式溶剂中确定自由能面以及肽的折叠动力学和全溶剂化蛋白质的纳秒模拟,进一步展示了MACE - OFF的能力。这些进展使得广大化学领域的科研人员能够以高精度和相对较低的计算成本对分子系统进行第一性原理模拟。