Suppr超能文献

DPA - 2:作为多任务学习者的大型原子模型。

DPA-2: a large atomic model as a multi-task learner.

作者信息

Zhang Duo, Liu Xinzijian, Zhang Xiangyu, Zhang Chengqian, Cai Chun, Bi Hangrui, Du Yiming, Qin Xuejian, Peng Anyang, Huang Jiameng, Li Bowen, Shan Yifan, Zeng Jinzhe, Zhang Yuzhi, Liu Siyuan, Li Yifan, Chang Junhan, Wang Xinyan, Zhou Shuo, Liu Jianchuan, Luo Xiaoshan, Wang Zhenyu, Jiang Wanrun, Wu Jing, Yang Yudi, Yang Jiyuan, Yang Manyi, Gong Fu-Qiang, Zhang Linshuang, Shi Mengchao, Dai Fu-Zhi, York Darrin M, Liu Shi, Zhu Tong, Zhong Zhicheng, Lv Jian, Cheng Jun, Jia Weile, Chen Mohan, Ke Guolin, Weinan E, Zhang Linfeng, Wang Han

机构信息

AI for Science Institute, Beijing 100080, P. R. China.

DP Technology, Beijing 100080, P. R. China.

出版信息

NPJ Comput Mater. 2024;10(1). doi: 10.1038/s41524-024-01493-2. Epub 2024 Dec 19.

Abstract

The rapid advancements in artificial intelligence (AI) are catalyzing transformative changes in atomic modeling, simulation, and design. AI-driven potential energy models have demonstrated the capability to conduct large-scale, long-duration simulations with the accuracy of electronic structure methods. However, the model generation process remains a bottleneck for large-scale applications. We propose a shift towards a model-centric ecosystem, wherein a large atomic model (LAM), pre-trained across multiple disciplines, can be efficiently fine-tuned and distilled for various downstream tasks, thereby establishing a new framework for molecular modeling. In this study, we introduce the DPA-2 architecture as a prototype for LAMs. Pre-trained on a diverse array of chemical and materials systems using a multi-task approach, DPA-2 demonstrates superior generalization capabilities across multiple downstream tasks compared to the traditional single-task pre-training and fine-tuning methodologies. Our approach sets the stage for the development and broad application of LAMs in molecular and materials simulation research.

摘要

人工智能(AI)的快速发展正在催化原子建模、模拟和设计方面的变革性变化。人工智能驱动的势能模型已展示出能够以电子结构方法的精度进行大规模、长时间模拟的能力。然而,模型生成过程仍然是大规模应用的瓶颈。我们建议转向以模型为中心的生态系统,在该系统中,跨多学科预训练的大型原子模型(LAM)可以针对各种下游任务进行高效微调与提炼,从而建立一个分子建模的新框架。在本研究中,我们引入DPA - 2架构作为LAMs的原型。DPA - 2使用多任务方法在各种化学和材料系统上进行预训练,与传统的单任务预训练和微调方法相比,它在多个下游任务中展现出卓越的泛化能力。我们的方法为LAMs在分子和材料模拟研究中的开发与广泛应用奠定了基础。

相似文献

1
DPA-2: a large atomic model as a multi-task learner.DPA - 2:作为多任务学习者的大型原子模型。
NPJ Comput Mater. 2024;10(1). doi: 10.1038/s41524-024-01493-2. Epub 2024 Dec 19.
8
Artificial intelligence for detecting keratoconus.人工智能在圆锥角膜检测中的应用。
Cochrane Database Syst Rev. 2023 Nov 15;11(11):CD014911. doi: 10.1002/14651858.CD014911.pub2.
10
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.人工智能驱动的抗菌肽发现:挖掘与生成
Acc Chem Res. 2025 Jun 17;58(12):1831-1846. doi: 10.1021/acs.accounts.0c00594. Epub 2025 Jun 3.

引用本文的文献

1
Ab Initio Accuracy Neural Network Potential for Drug-Like Molecules.类药物分子的从头算精度神经网络势
Research (Wash D C). 2025 Aug 25;8:0837. doi: 10.34133/research.0837. eCollection 2025.
2
AI-Driven Defect Engineering for Advanced Thermoelectric Materials.用于先进热电材料的人工智能驱动缺陷工程
Adv Mater. 2025 Sep;37(35):e2505642. doi: 10.1002/adma.202505642. Epub 2025 Jun 23.

本文引用的文献

2
Scaling deep learning for materials discovery.深度学习在材料发现中的应用。
Nature. 2023 Dec;624(7990):80-85. doi: 10.1038/s41586-023-06735-9. Epub 2023 Nov 29.
5
QDπ: A Quantum Deep Potential Interaction Model for Drug Discovery.QDπ:一种用于药物发现的量子深度学习势能交互模型。
J Chem Theory Comput. 2023 Feb 28;19(4):1261-1275. doi: 10.1021/acs.jctc.2c01172. Epub 2023 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验