Suppr超能文献

一种基于最佳-最差管理的增强型黏菌算法用于数值优化问题

An Enhanced Slime Mould Algorithm Based on Best-Worst Management for Numerical Optimization Problems.

作者信息

Li Tongzheng, Meng Hongchi, Wang Dong, Fu Bin, Shao Yuanyuan, Liu Zhenzhong

机构信息

Salford Business School, University of Salford, Manchester M5 4WT, UK.

ESC Amiens, 80000 Amiens, France.

出版信息

Biomimetics (Basel). 2025 Aug 1;10(8):504. doi: 10.3390/biomimetics10080504.

Abstract

The Slime Mould Algorithm (SMA) is a widely used swarm intelligence algorithm. Encouraged by the theory of no free lunch and the inherent shortcomings of the SMA, this work proposes a new variant of the SMA, called the BWSMA, in which three improvement mechanisms are integrated. The adaptive greedy mechanism is used to accelerate the convergence of the algorithm and avoid ineffective updates. The best-worst management strategy improves the quality of the population and increases its search capability. The stagnant replacement mechanism prevents the algorithm from falling into a local optimum by replacing stalled individuals. In order to verify the effectiveness of the proposed method, this paper conducts a full range of experiments on the CEC2018 test suite and the CEC2022 test suite and compares BWSMA with three derived algorithms, eight SMA variants, and eight other improved algorithms. The experimental results are analyzed using the Wilcoxon rank-sum test, the Friedman test, and the Nemenyi test. The results indicate that the BWSMA significantly outperforms these compared algorithms. In the comparison with the SMA variants, the BWSMA obtained average rankings of 1.414, 1.138, 1.069, and 1.414. In comparison with other improved algorithms, the BWSMA obtained average rankings of 2.583 and 1.833. Finally, the applicability of the BWSMA is further validated through two structural optimization problems. In conclusion, the proposed BWSMA is a promising algorithm with excellent search accuracy and robustness.

摘要

黏菌算法(SMA)是一种广泛应用的群体智能算法。受无免费午餐理论和SMA固有缺点的启发,本文提出了一种SMA的新变体,称为BWSMA,其中集成了三种改进机制。自适应贪婪机制用于加速算法的收敛并避免无效更新。最佳-最差管理策略提高了种群质量并增强了其搜索能力。停滞个体替换机制通过替换停滞个体来防止算法陷入局部最优。为了验证所提方法的有效性,本文在CEC2018测试套件和CEC2022测试套件上进行了全面实验,并将BWSMA与三种派生算法、八种SMA变体以及其他八种改进算法进行了比较。使用威尔科克森秩和检验、弗里德曼检验和内曼尼检验对实验结果进行了分析。结果表明,BWSMA明显优于这些对比算法。在与SMA变体的比较中,BWSMA获得的平均排名分别为1.414、1.138、1.069和1.414。与其他改进算法相比,BWSMA获得的平均排名分别为2.583和1.833。最后,通过两个结构优化问题进一步验证了BWSMA的适用性。总之,所提出的BWSMA是一种具有出色搜索精度和鲁棒性的有前途的算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8851/12383463/a0cd2caf4dc4/biomimetics-10-00504-g0A1a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验