Chakraborty Moutoshi, Bhuiyan Shamsul Arafin, Strachan Simon, Shiddiky Muhammad J A, Nguyen Nam-Trung, Soda Narshone, Ford Rebecca
Centre for Planetary Health and Food Security (CPHFS), Nathan Campus, Griffith University, Nathan, QLD 4111, Australia.
School of Environment and Science (ESC), Nathan Campus, Griffith University, Nathan, QLD 4111, Australia.
Biosensors (Basel). 2025 Aug 8;15(8):518. doi: 10.3390/bios15080518.
Early and accurate detection of plant diseases is critical for ensuring global food security and agricultural resilience. Ratoon stunting disease (RSD), caused by the bacterium subsp. (), is among the most economically significant diseases of sugarcane worldwide. Its cryptic nature-characterized by an absence of visible symptoms-renders timely diagnosis particularly difficult, contributing to substantial undetected yield losses across major sugar-producing regions. Here, we report the development of a potential-induced electrochemical (EC) nanobiosensor platform for the rapid, low-cost, and field-deployable detection of DNA directly from crude sugarcane sap. This method eliminates the need for conventional nucleic acid extraction and thermal cycling by integrating the following: (i) a boiling lysis-based DNA release from xylem sap; (ii) sequence-specific magnetic bead-based purification of DNA using immobilized capture probes; and (iii) label-free electrochemical detection using a potential-driven DNA adsorption sensing platform. The biosensor shows exceptional analytical performance, achieving a detection limit of 10 cells/µL with a broad dynamic range spanning from 10 to 1 copy/µL (r = 0.99) and high reproducibility (SD < 5%, n = 3). Field validation using genetically diverse sugarcane cultivars from an inoculated trial demonstrated a strong correlation between biosensor signals and known disease resistance ratings. Quantitative results from the EC biosensor also showed a robust correlation with qPCR data (r = 0.84, n = 10, < 0.001), confirming diagnostic accuracy. This first-in-class EC nanobiosensor for RSD represents a major technological advance over existing methods by offering a cost-effective, equipment-free, and scalable solution suitable for on-site deployment by non-specialist users. Beyond sugarcane, the modular nature of this detection platform opens up opportunities for multiplexed detection of plant pathogens, making it a transformative tool for early disease surveillance, precision agriculture, and biosecurity monitoring. This work lays the foundation for the development of a universal point-of-care platform for managing plant and crop diseases, supporting sustainable agriculture and global food resilience in the face of climate and pathogen threats.
植物病害的早期准确检测对于确保全球粮食安全和农业恢复力至关重要。宿根矮化病(RSD)由 亚种( )细菌引起,是全球甘蔗最具经济重要性的病害之一。其隐匿性——以无可见症状为特征——使得及时诊断尤为困难,导致主要甘蔗产区大量未被检测到的产量损失。在此,我们报告了一种潜在诱导电化学(EC)纳米生物传感器平台的开发,用于直接从甘蔗粗汁液中快速、低成本且可现场部署地检测 DNA。该方法通过整合以下内容消除了对传统核酸提取和热循环的需求:(i)基于煮沸裂解从木质部汁液中释放 DNA;(ii)使用固定化捕获探针基于序列特异性磁珠对 DNA 进行纯化;(iii)使用电位驱动的 DNA 吸附传感平台进行无标记电化学检测。该生物传感器显示出卓越的分析性能,检测限达到 10 个细胞/µL,动态范围宽广,从 10 到 1 拷贝/µL(r = 0.99),且具有高重现性(SD < 5%,n = 3)。使用接种试验中遗传多样的甘蔗品种进行的现场验证表明,生物传感器信号与已知抗病评级之间存在强相关性。EC 生物传感器的定量结果也与 qPCR 数据显示出强相关性(r = 0.84,n = 10, < 0.001),证实了诊断准确性。这种用于 RSD 的一流 EC 纳米生物传感器相较于现有方法代表了一项重大技术进步,提供了一种经济高效、无需设备且可扩展的解决方案,适合非专业用户进行现场部署。除甘蔗外,该检测平台的模块化性质为植物病原体的多重检测开辟了机会,使其成为早期病害监测、精准农业和生物安全监测的变革性工具。这项工作为开发用于管理植物和作物病害的通用即时检测平台奠定了基础,有助于在面对气候和病原体威胁时实现可持续农业和全球粮食恢复力。