Li Zhi, Fei Fei, Zhang Guanglie
College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China.
College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China.
Biosensors (Basel). 2025 Aug 20;15(8):550. doi: 10.3390/bios15080550.
Continuous cardiovascular monitoring is essential for the early detection of cardiac events, but conventional electrode-based ECG systems cause skin irritation and are unsuitable for long-term wear. We propose an electrode-free ECG monitoring approach that leverages synchronized phonocardiogram (PCG) and seismocardiogram (SCG) signals captured by wireless mechano-acoustic sensors. PCG provides precise valvular event timings, while SCG provides mechanical context, enabling the robust identification of systolic/diastolic intervals and pathological patterns. A deep learning model reconstructs ECG waveforms by intelligently combining mechano-acoustic sensor data. Its architecture leverages specialized neural network components to identify and correlate key cardiac signatures from multimodal inputs. Experimental validation on an IoT sensor dataset yields a mean Pearson correlation of 0.96 and an RMSE of 0.49 mV compared to clinical ECGs. By eliminating skin-contact electrodes through PCG-SCG fusion, this system enables robust IoT-compatible daily-life cardiac monitoring.
连续心血管监测对于心脏事件的早期检测至关重要,但传统的基于电极的心电图系统会引起皮肤刺激,不适合长期佩戴。我们提出了一种无电极心电图监测方法,该方法利用无线机械声学传感器捕获的同步心音图(PCG)和振动心电图(SCG)信号。PCG提供精确的瓣膜事件时间,而SCG提供机械背景,从而能够可靠地识别收缩期/舒张期间隔和病理模式。一种深度学习模型通过智能地组合机械声学传感器数据来重建心电图波形。其架构利用专门的神经网络组件从多模态输入中识别关键心脏特征并建立关联。在物联网传感器数据集上的实验验证表明,与临床心电图相比,平均皮尔逊相关系数为0.96,均方根误差为0.49 mV。通过PCG-SCG融合消除皮肤接触电极,该系统能够实现可靠的、与物联网兼容的日常生活心脏监测。