Suppr超能文献

人工智能引导的射血分数保留和降低的心力衰竭神经调节:机制、证据及未来方向

Artificial Intelligence-Guided Neuromodulation in Heart Failure with Preserved and Reduced Ejection Fraction: Mechanisms, Evidence, and Future Directions.

作者信息

Ansari Rabiah Aslam, Senapati Sidhartha Gautam, Ahluwalia Vibhor, Panjwani Gianeshwaree Alias Rachna, Kaur Anmolpreet, Yerrapragada Gayathri, Jayapradhaban Kala Jayavinamika, Elangovan Poonguzhali, Karuppiah Shiva Sankari, Asadimanesh Naghmeh, Muthyala Anjani, Arunachalam Shivaram P

机构信息

Digital Engineering & Artificial Intelligence Laboratory (DEAL), Department of Critical Care Medicine, Mayo Clinic, Jacksonville, FL 32224, USA.

Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA.

出版信息

J Cardiovasc Dev Dis. 2025 Aug 19;12(8):314. doi: 10.3390/jcdd12080314.

Abstract

Heart failure, a significant global health burden, is divided into heart failure with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF), characterized by systolic dysfunction and diastolic stiffness, respectively. While HFrEF benefits from pharmacological and device-based therapies, HFpEF lacks effective treatments, with both conditions leading to high rehospitalization rates and reduced quality of life, especially in older adults with comorbidities. This review explores the role of artificial intelligence (AI) in advancing autonomic neuromodulation for heart failure management. AI enhances patient selection, optimizes stimulation strategies, and enables adaptive, closed-loop systems. In HFrEF, vagus nerve stimulation and baroreflex activation therapy improve functional status and biomarkers, while AI-driven models adjust stimulation dynamically based on physiological feedback. In HFpEF, AI aids in deep phenotyping to identify responsive subgroups for neuromodulatory interventions. Clinical tools support remote monitoring, risk assessment, and symptom detection. However, challenges like data integration, ethical oversight, and clinical adoption limit real-world application. Algorithm transparency, bias minimization, and equitable access are critical for success. Interdisciplinary collaboration and ethical innovation are essential to develop personalized, data-driven, patient-centered heart failure treatment strategies through AI-guided neuromodulation.

摘要

心力衰竭是一项重大的全球健康负担,分为射血分数降低的心力衰竭(HFrEF)和射血分数保留的心力衰竭(HFpEF),分别以收缩功能障碍和舒张僵硬为特征。虽然HFrEF受益于药物治疗和基于器械的治疗,但HFpEF缺乏有效的治疗方法,这两种情况都会导致高再住院率和生活质量下降,尤其是在患有合并症的老年人中。本综述探讨了人工智能(AI)在推进心力衰竭管理的自主神经调节中的作用。人工智能可改善患者选择、优化刺激策略并实现自适应闭环系统。在HFrEF中,迷走神经刺激和压力反射激活疗法可改善功能状态和生物标志物,而人工智能驱动的模型可根据生理反馈动态调整刺激。在HFpEF中,人工智能有助于进行深度表型分析,以识别对神经调节干预有反应的亚组。临床工具支持远程监测、风险评估和症状检测。然而,数据整合、伦理监督和临床应用等挑战限制了其在现实世界中的应用。算法透明度、偏差最小化和公平获取对于成功至关重要。跨学科合作和伦理创新对于通过人工智能引导的神经调节制定个性化、数据驱动、以患者为中心的心力衰竭治疗策略至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd59/12386544/2aec759c497d/jcdd-12-00314-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验