文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

放射组学分析及不同机器学习模型在前列腺癌诊断中的作用

The Role of Radiomic Analysis and Different Machine Learning Models in Prostate Cancer Diagnosis.

作者信息

Bekou Eleni, Seimenis Ioannis, Tsochatzis Athanasios, Tziagkana Karafyllia, Kelekis Nikolaos, Deftereos Savas, Courcoutsakis Nikolaos, Koukourakis Michael I, Karavasilis Efstratios

机构信息

Medical Physics Laboratory, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece.

Medical Physics Laboratory, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece.

出版信息

J Imaging. 2025 Jul 23;11(8):250. doi: 10.3390/jimaging11080250.


DOI:10.3390/jimaging11080250
PMID:40863460
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12387180/
Abstract

Prostate cancer (PCa) is the most common malignancy in men. Precise grading is crucial for the effective treatment approaches of PCa. Machine learning (ML) applied to biparametric Magnetic Resonance Imaging (bpMRI) radiomics holds promise for improving PCa diagnosis and prognosis. This study investigated the efficiency of seven ML models to diagnose the different PCa grades, changing the input variables. Our studied sample comprised 214 men who underwent bpMRI in different imaging centers. Seven ML algorithms were compared using radiomic features extracted from T2-weighted (T2W) and diffusion-weighted (DWI) MRI, with and without the inclusion of Prostate-Specific Antigen (PSA) values. The performance of the models was evaluated using the receiver operating characteristic curve analysis. The models' performance was strongly dependent on the input parameters. Radiomic features derived from T2WI and DWI, whether used independently or in combination, demonstrated limited clinical utility, with AUC values ranging from 0.703 to 0.807. However, incorporating the PSA index significantly improved the models' efficiency, regardless of lesion location or degree of malignancy, resulting in AUC values ranging from 0.784 to 1.00. There is evidence that ML methods, in combination with radiomic analysis, can contribute to solving differential diagnostic problems of prostate cancers. Also, optimization of the analysis method is critical, according to the results of our study.

摘要

前列腺癌(PCa)是男性中最常见的恶性肿瘤。精确分级对于PCa的有效治疗方法至关重要。应用于双参数磁共振成像(bpMRI)影像组学的机器学习(ML)有望改善PCa的诊断和预后。本研究调查了七种ML模型在改变输入变量的情况下诊断不同PCa分级的效率。我们的研究样本包括214名在不同影像中心接受bpMRI检查的男性。使用从T2加权(T2W)和扩散加权(DWI)MRI提取的影像组学特征,比较了七种ML算法,包括是否纳入前列腺特异性抗原(PSA)值。使用受试者工作特征曲线分析评估模型的性能。模型的性能强烈依赖于输入参数。从T2WI和DWI衍生的影像组学特征,无论单独使用还是联合使用,临床效用都有限,AUC值范围为0.703至0.807。然而,纳入PSA指数显著提高了模型的效率,无论病变位置或恶性程度如何,AUC值范围为0.784至1.00。有证据表明,ML方法与影像组学分析相结合有助于解决前列腺癌的鉴别诊断问题。此外,根据我们的研究结果,优化分析方法至关重要。

相似文献

[1]
The Role of Radiomic Analysis and Different Machine Learning Models in Prostate Cancer Diagnosis.

J Imaging. 2025-7-23

[2]
Machine learning models for discriminating clinically significant from clinically insignificant prostate cancer using bi-parametric magnetic resonance imaging.

Diagn Interv Radiol. 2024-10-1

[3]
Assessment of prostate cancer aggressiveness through the combined analysis of prostate MRI and 2.5D deep learning models.

Front Oncol. 2025-6-30

[4]
Combining multi-parametric MRI radiomics features with tumor abnormal protein to construct a machine learning-based predictive model for prostate cancer.

Sci Rep. 2025-7-2

[5]
Machine learning-based construction and validation of an radiomics model for predicting ISUP grading in prostate cancer: a multicenter radiomics study based on [68Ga]Ga-PSMA PET/CT.

Eur J Nucl Med Mol Imaging. 2025-6-24

[6]
An integrated nomogram combining deep learning, Prostate Imaging-Reporting and Data System (PI-RADS) scoring, and clinical variables for identification of clinically significant prostate cancer on biparametric MRI: a retrospective multicentre study.

Lancet Digit Health. 2021-7

[7]
Comparative analysis of tumor and mesorectum radiomics in predicting neoadjuvant chemoradiotherapy response in locally advanced rectal cancer.

Diagn Interv Radiol. 2025-8-12

[8]
A deep learning derived prostate zonal volume-based biomarker from T2-weighted MRI to distinguish between prostate cancer and benign prostatic hyperplasia.

Med Phys. 2025-8

[9]
The Role of Dynamic Contrast Enhanced Magnetic Resonance Imaging in Evaluating Prostate Adenocarcinoma: A Partially-Blinded Retrospective Study of a Prostatectomy Patient Cohort With Whole Gland Histopathology Correlation and Application of PI-RADS or TNM Staging.

Prostate. 2025-4

[10]
Machine learning-based radiomics for differentiating lung cancer subtypes in brain metastases using CE-T1WI.

Front Oncol. 2025-6-19

本文引用的文献

[1]
ESR Essentials: radiomics-practice recommendations by the European Society of Medical Imaging Informatics.

Eur Radiol. 2025-3

[2]
The Role of Radiomics in the Prediction of Clinically Significant Prostate Cancer in the PI-RADS v2 and v2.1 Era: A Systematic Review.

Cancers (Basel). 2024-8-24

[3]
Can we predict pathology without surgery? Weighing the added value of multiparametric MRI and whole prostate radiomics in integrative machine learning models.

Eur Radiol. 2024-10

[4]
MRI-Based Surrogate Imaging Markers of Aggressiveness in Prostate Cancer: Development of a Machine Learning Model Based on Radiomic Features.

Diagnostics (Basel). 2023-8-28

[5]
The Effect of Image Resampling on the Performance of Radiomics-Based Artificial Intelligence in Multicenter Prostate MRI.

J Magn Reson Imaging. 2024-5

[6]
Interactive Explainable Deep Learning Model Informs Prostate Cancer Diagnosis at MRI.

Radiology. 2023-5

[7]
Machine learning-based radiomics model to predict benign and malignant PI-RADS v2.1 category 3 lesions: a retrospective multi-center study.

BMC Med Imaging. 2023-3-29

[8]
Diagnostic Performance Evaluation of Multiparametric Magnetic Resonance Imaging in the Detection of Prostate Cancer with Supervised Machine Learning Methods.

Diagnostics (Basel). 2023-2-20

[9]
Biparametric MRI-based radiomics classifiers for the detection of prostate cancer in patients with PSA serum levels of 4∼10 ng/mL.

Front Oncol. 2022-12-5

[10]
Radiomic-based machine learning model for the accurate prediction of prostate cancer risk stratification.

Br J Radiol. 2023-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索