Suppr超能文献

通过二甲铵阳离子添加剂进行中间相工程以制备稳定的钙钛矿太阳能电池。

Intermediate-phase engineering via dimethylammonium cation additive for stable perovskite solar cells.

作者信息

McMeekin David P, Holzhey Philippe, Fürer Sebastian O, Harvey Steven P, Schelhas Laura T, Ball James M, Mahesh Suhas, Seo Seongrok, Hawkins Nicholas, Lu Jianfeng, Johnston Michael B, Berry Joseph J, Bach Udo, Snaith Henry J

机构信息

Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.

Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia.

出版信息

Nat Mater. 2023 Jan;22(1):73-83. doi: 10.1038/s41563-022-01399-8. Epub 2022 Dec 1.

Abstract

Achieving the long-term stability of perovskite solar cells is arguably the most important challenge required to enable widespread commercialization. Understanding the perovskite crystallization process and its direct impact on device stability is critical to achieving this goal. The commonly employed dimethyl-formamide/dimethyl-sulfoxide solvent preparation method results in a poor crystal quality and microstructure of the polycrystalline perovskite films. In this work, we introduce a high-temperature dimethyl-sulfoxide-free processing method that utilizes dimethylammonium chloride as an additive to control the perovskite intermediate precursor phases. By controlling the crystallization sequence, we tune the grain size, texturing, orientation (corner-up versus face-up) and crystallinity of the formamidinium (FA)/caesium (FA)CsPb(IBr) perovskite system. A population of encapsulated devices showed improved operational stability, with a median T80 lifetime (the time over which the device power conversion efficiency decreases to 80% of its initial value) for the steady-state power conversion efficiency of 1,190 hours, and a champion device showed a T80 of 1,410 hours, under simulated sunlight at 65 °C in air, under open-circuit conditions. This work highlights the importance of material quality in achieving the long-term operational stability of perovskite optoelectronic devices.

摘要

实现钙钛矿太阳能电池的长期稳定性可以说是实现广泛商业化所需面对的最重要挑战。了解钙钛矿结晶过程及其对器件稳定性的直接影响对于实现这一目标至关重要。常用的二甲基甲酰胺/二甲基亚砜溶剂制备方法会导致多晶钙钛矿薄膜的晶体质量和微观结构较差。在这项工作中,我们引入了一种无高温二甲基亚砜的加工方法,该方法利用氯化铵作为添加剂来控制钙钛矿中间前驱体相。通过控制结晶顺序,我们调整了甲脒(FA)/铯(FA)CsPb(IBr)钙钛矿体系的晶粒尺寸、织构、取向(角向上与面上)和结晶度。一批封装器件显示出更高的运行稳定性,在65°C空气中的模拟阳光下,开路条件下,稳态功率转换效率的T80寿命中位数(器件功率转换效率降至其初始值的80%所需的时间)为1190小时,而一个最佳器件的T80为1410小时。这项工作突出了材料质量在实现钙钛矿光电器件长期运行稳定性方面的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验