Suppr超能文献

基于遗传算法-鲸鱼优化算法-长短期记忆网络的股票市场预测研究

Stock market forecasting research based on GA-WOA-LSTM.

作者信息

Huiyong Wu, Wang Zunlong

机构信息

School of Science, Shenyang University of Chemical Technology, Shenyang, Liaoning, China.

出版信息

PLoS One. 2025 Aug 27;20(8):e0330324. doi: 10.1371/journal.pone.0330324. eCollection 2025.

Abstract

With the increasing complexity and prosperity of global financial markets, stock market forecasting plays a critical role in investment decision-making, market regulation, and economic planning. This study proposes a hybrid prediction model that integrates Genetic Algorithm (GA), Whale Optimization Algorithm (WOA), and Long Short-Term Memory (LSTM) neural networks, referred to as the GA-WOA-LSTM model. In this framework, GA is employed to generate the initial population and perform global search for LSTM hyperparameter optimization, while WOA is applied to conduct local refinement of the search space. The LSTM model, known for its superior ability to capture nonlinear dependencies and long-term patterns in time series, is used to model and forecast future stock closing prices. The performance of the proposed model is evaluated on both training and test datasets using key metrics including Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE), and the coefficient of determination (R2). Experimental results demonstrate that the GA-WOA-LSTM model significantly outperforms traditional baseline models in terms of predictive accuracy and generalization capability. This research offers a robust and effective modeling strategy for financial time series forecasting and provides valuable insights for real-world financial applications.

摘要

随着全球金融市场日益复杂和繁荣,股票市场预测在投资决策、市场监管和经济规划中发挥着关键作用。本研究提出了一种混合预测模型,该模型整合了遗传算法(GA)、鲸鱼优化算法(WOA)和长短期记忆(LSTM)神经网络,称为GA-WOA-LSTM模型。在此框架中,遗传算法用于生成初始种群并对长短期记忆神经网络的超参数优化进行全局搜索,而鲸鱼优化算法则用于对搜索空间进行局部细化。长短期记忆神经网络以其在时间序列中捕捉非线性依赖关系和长期模式的卓越能力而闻名,用于对未来股票收盘价进行建模和预测。使用包括平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、均方根误差(RMSE)和决定系数(R2)在内的关键指标,在训练数据集和测试数据集上对所提出模型的性能进行评估。实验结果表明,GA-WOA-LSTM模型在预测准确性和泛化能力方面显著优于传统基线模型。本研究为金融时间序列预测提供了一种稳健有效的建模策略,并为实际金融应用提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec8a/12385415/78a0e266e565/pone.0330324.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验