Suppr超能文献

用于对与特发性炎性肌病相关的间质性肺疾病的影像模式进行分类的深度学习。

Deep learning for classifying imaging patterns of interstitial lung disease associated with idiopathic inflammatory myopathies.

作者信息

Zhang Jingping, He Liyu, Wei Ying, Tong Jiayin, Yang Kai, Wu Jiaojiao, Guo Youmin, Shi Feng, Jin Chenwang

机构信息

Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, P.R. China.

Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.

出版信息

Sci Rep. 2025 Aug 27;15(1):31655. doi: 10.1038/s41598-025-15960-3.

Abstract

Diagnosing and classifying the imaging patterns of idiopathic inflammatory myopathies-associated interstitial lung disease (IIM-ILD) is a crucial but challenging task requiring specialized physicians' expertise. This study aims to develop and validate a deep-learning model to assist in classifying the IIM-ILD imaging patterns. The study retrospectively collected 629 patients with IIM-ILD and split them into a training set (361 subjects), an internal testing set (156 subjects) from January 2015 to December 2019, and a temporal external validation set (112 subjects) from January 2020 to August 2022. A deep-learning model was developed and validated to categorize IIM-ILD imaging patterns using HRCT images. Class activation mapping and label smoothing strategy were utilized to enhance the interpretability and performance. Model performance was assessed by the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and F1-score. The proposed deep-learning model achieved an average AUC of 0.885, accuracy of 0.724, and F1-score of 0.706 in the internal testing set, and an AUC of 0.835, accuracy of 0.795, and F1-score of 0.727 in the temporal external validation set. In summary, the deep-learning model can effectively classify the multiple imaging patterns of IIM-ILD, showing potential as a valuable radiological diagnostic support system in clinical practice.

摘要

诊断和分类特发性炎症性肌病相关间质性肺疾病(IIM-ILD)的影像学模式是一项至关重要但具有挑战性的任务,需要专业医生的专业知识。本研究旨在开发并验证一种深度学习模型,以协助对IIM-ILD影像学模式进行分类。该研究回顾性收集了629例IIM-ILD患者,并将他们分为一个训练集(361名受试者)、一个2015年1月至2019年12月的内部测试集(156名受试者)以及一个2020年1月至2022年8月的时间外部验证集(112名受试者)。开发并验证了一种深度学习模型,使用高分辨率CT(HRCT)图像对IIM-ILD影像学模式进行分类。采用类激活映射和标签平滑策略来增强可解释性和性能。通过受试者操作特征曲线(AUC)下的面积、准确性、敏感性、特异性和F1分数来评估模型性能。所提出的深度学习模型在内部测试集中的平均AUC为0.885,准确性为0.724,F1分数为0.706;在时间外部验证集中的AUC为0.835,准确性为0.795,F1分数为0.727。总之,深度学习模型可以有效地对IIM-ILD的多种影像学模式进行分类,在临床实践中显示出作为有价值的放射诊断支持系统的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验