Suppr超能文献

使用机器学习预测外周静脉导管相关静脉炎(PPML):PPML在心脏病住院患者中的开发与前瞻性验证

Predicting peripheral venous catheter related phlebitis using machine learning (PPML): development and prospective validation of PPML for cardiology inpatients.

作者信息

Welvaars Koen, Groenendaal Femke, van den Bekerom Michel P J, Doornberg Job N, van Haarst Ernst P, Riezebos Robert

机构信息

Data Science Team, OLVG, Amsterdam, The Netherlands.

Department of Orthopaedic Surgery, UMCG, Groningen, The Netherlands.

出版信息

BMC Med Inform Decis Mak. 2025 Aug 27;25(1):316. doi: 10.1186/s12911-025-03158-6.

Abstract

BACKGROUND

Peripheral venous catheter use is a common healthcare practice and carries risk for peripheral venous catheter-related phlebitis (PVCP). The aims of this study were to develop a machine learning model using inpatient hospital data to accurately predict the risk of PVCP and apply this model for early identification to reduce the risk of PVCP in the department of Cardiology.

METHODS

A prediction model was developed to estimate the risk of developing PVCP within 3–24 h after introduction during a clinical admission in the department of Cardiology. Data of 107.419 generic hospital clinical admissions between January 2017 and December 2020 were used. For evaluating generalizability of the model, 1.199 clinical admissions between January 2021 and May 2021 from Cardiology were used as validation dataset. For prospectively evaluating clinical utility, 9.885 admissions between May 2021 and December 2022 of Cardiology were used.

RESULTS

Our results demonstrate a strong-performing model with an AUC of 0.89 (CI: 0.87–0.91) based on the test set, and an AUC of 0.72 (CI: 0.66–0.78) based on the validation data. A significant descending trend in the incidence of PVCP in long stay admissions (p-value of 0. 01) was observed during prospective evaluation.

CONCLUSIONS

The early identification proves beneficial in reducing the risk of PVCP significantly for patients with long-stay admissions in the Cardiology department.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1186/s12911-025-03158-6.

摘要

背景

外周静脉导管的使用是一种常见的医疗行为,存在发生外周静脉导管相关静脉炎(PVCP)的风险。本研究的目的是利用住院患者医院数据开发一种机器学习模型,以准确预测PVCP的风险,并应用该模型进行早期识别,以降低心内科PVCP的风险。

方法

开发了一种预测模型,以估计心内科临床入院期间导管置入后3 - 24小时内发生PVCP的风险。使用了2017年1月至2020年12月期间107419例综合医院临床入院的数据。为了评估模型的通用性,将2021年1月至2021年5月心内科的1199例临床入院病例用作验证数据集。为了前瞻性评估临床效用,使用了2021年5月至2022年12月心内科的9885例入院病例。

结果

我们的结果显示,基于测试集,该模型表现出色,AUC为0.89(CI:0.87 - 0.91),基于验证数据的AUC为0.72(CI:0.66 - 0.78)。在前瞻性评估期间,观察到长期住院患者中PVCP发生率有显著下降趋势(p值为0.01)。

结论

早期识别对于降低心内科长期住院患者PVCP的风险具有显著益处。

补充信息

在线版本包含可在10.1186/s12911 - 025 - 03158 - 6获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c048/12382011/cf4ae9574ba0/12911_2025_3158_Fig4_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验