Suppr超能文献

使用人工神经网络预测帕金森病的认知衰退:一种可解释的人工智能方法。

Predicting Cognitive Decline in Parkinson's Disease Using Artificial Neural Networks: An Explainable AI Approach.

作者信息

Colautti Laura, Casella Monica, Robba Matteo, Marocco Davide, Ponticorvo Michela, Iannello Paola, Antonietti Alessandro, Marra Camillo

机构信息

Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy.

Natural and Artificial Cognition Lab "Orazio Miglino", Department of Humanistic Studies, University of Naples "Federico II", 80138 Naples, Italy.

出版信息

Brain Sci. 2025 Jul 23;15(8):782. doi: 10.3390/brainsci15080782.

Abstract

BACKGROUND/OBJECTIVES: The study aims to identify key cognitive and non-cognitive variables (e.g., clinical, neuroimaging, and genetic data) predicting cognitive decline in Parkinson's disease (PD) patients using machine learning applied to a sample ( = 618) from the Parkinson's Progression Markers Initiative database. Traditional research has mainly employed explanatory approaches to explore variable relationships, rather than maximizing predictive accuracy for future cognitive decline. In the present study, we implemented a predictive framework that integrates a broad range of baseline cognitive, clinical, genetic, and imaging data to accurately forecast changes in cognitive functioning in PD patients.

METHODS

An artificial neural network was trained on baseline data to predict general cognitive status three years later. Model performance was evaluated using 5-fold stratified cross-validation. We investigated model interpretability using explainable artificial intelligence techniques, including Shapley Additive Explanations (SHAP) values, Group-Wise Feature Masking, and Brute-Force Combinatorial Masking, to identify the most influential predictors of cognitive decline.

RESULTS

The model achieved a recall of 0.91 for identifying patients who developed cognitive decline, with an overall classification accuracy of 0.79. All applied explainability techniques consistently highlighted baseline MoCA scores, memory performance, the motor examination score (MDS-UPDRS Part III), and anxiety as the most predictive features.

CONCLUSIONS

From a clinical perspective, the findings can support the early detection of PD patients who are more prone to developing cognitive decline, thereby helping to prevent cognitive impairments by designing specific treatments. This can improve the quality of life for patients and caregivers, supporting patient autonomy.

摘要

背景/目的:本研究旨在通过将机器学习应用于帕金森病进展标记物计划数据库中的一个样本(n = 618),识别预测帕金森病(PD)患者认知衰退的关键认知和非认知变量(例如临床、神经影像和基因数据)。传统研究主要采用解释性方法来探索变量之间的关系,而不是最大化对未来认知衰退的预测准确性。在本研究中,我们实施了一个预测框架,该框架整合了广泛的基线认知、临床、基因和影像数据,以准确预测PD患者认知功能的变化。

方法

使用基线数据训练人工神经网络,以预测三年后的总体认知状态。使用5折分层交叉验证评估模型性能。我们使用可解释人工智能技术,包括Shapley值、分组特征掩码和暴力组合掩码,来研究模型的可解释性,以识别认知衰退最具影响力的预测因素。

结果

该模型识别出发生认知衰退患者的召回率为0.91,总体分类准确率为0.79。所有应用的可解释性技术一致强调基线蒙特利尔认知评估量表(MoCA)得分、记忆表现、运动检查得分(MDS-UPDRS第三部分)和焦虑是最具预测性的特征。

结论

从临床角度来看,这些发现可以支持早期检测出更易发生认知衰退的PD患者,从而通过设计特定治疗方法来帮助预防认知障碍。这可以提高患者和护理人员的生活质量,支持患者的自主性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8a4/12384829/dd95bb4faf57/brainsci-15-00782-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验