Suppr超能文献

人工智能技术在疾病诊断与预测中的评估

Evaluation of artificial intelligence techniques in disease diagnosis and prediction.

作者信息

Ghaffar Nia Nafiseh, Kaplanoglu Erkan, Nasab Ahad

机构信息

College of Engineering and Computer Science, The University of Tennessee at Chattanooga, Chattanooga, TN 37403 USA.

出版信息

Discov Artif Intell. 2023;3(1):5. doi: 10.1007/s44163-023-00049-5. Epub 2023 Jan 30.

Abstract

A broad range of medical diagnoses is based on analyzing disease images obtained through high-tech digital devices. The application of artificial intelligence (AI) in the assessment of medical images has led to accurate evaluations being performed automatically, which in turn has reduced the workload of physicians, decreased errors and times in diagnosis, and improved performance in the prediction and detection of various diseases. AI techniques based on medical image processing are an essential area of research that uses advanced computer algorithms for prediction, diagnosis, and treatment planning, leading to a remarkable impact on decision-making procedures. Machine Learning (ML) and Deep Learning (DL) as advanced AI techniques are two main subfields applied in the healthcare system to diagnose diseases, discover medication, and identify patient risk factors. The advancement of electronic medical records and big data technologies in recent years has accompanied the success of ML and DL algorithms. ML includes neural networks and fuzzy logic algorithms with various applications in automating forecasting and diagnosis processes. DL algorithm is an ML technique that does not rely on expert feature extraction, unlike classical neural network algorithms. DL algorithms with high-performance calculations give promising results in medical image analysis, such as fusion, segmentation, recording, and classification. Support Vector Machine (SVM) as an ML method and Convolutional Neural Network (CNN) as a DL method is usually the most widely used techniques for analyzing and diagnosing diseases. This review study aims to cover recent AI techniques in diagnosing and predicting numerous diseases such as cancers, heart, lung, skin, genetic, and neural disorders, which perform more precisely compared to specialists without human error. Also, AI's existing challenges and limitations in the medical area are discussed and highlighted.

摘要

广泛的医学诊断是基于对通过高科技数字设备获得的疾病图像进行分析。人工智能(AI)在医学图像评估中的应用使得能够自动进行准确的评估,这进而减少了医生的工作量,降低了诊断中的错误和时间,并提高了对各种疾病的预测和检测性能。基于医学图像处理的人工智能技术是一个重要的研究领域,它使用先进的计算机算法进行预测、诊断和治疗规划,对决策程序产生了显著影响。机器学习(ML)和深度学习(DL)作为先进的人工智能技术是医疗保健系统中用于诊断疾病、发现药物和识别患者风险因素的两个主要子领域。近年来,电子病历和大数据技术的发展伴随着ML和DL算法的成功。ML包括神经网络和模糊逻辑算法,在自动化预测和诊断过程中有各种应用。DL算法是一种ML技术,与经典神经网络算法不同,它不依赖于专家特征提取。具有高性能计算能力的DL算法在医学图像分析中给出了有希望的结果,如融合、分割、记录和分类。支持向量机(SVM)作为一种ML方法和卷积神经网络(CNN)作为一种DL方法通常是用于分析和诊断疾病的最广泛使用的技术。这篇综述研究旨在涵盖近期人工智能技术在诊断和预测多种疾病方面的应用,如癌症、心脏、肺部、皮肤、遗传和神经疾病,这些技术相比专家能够更精确地执行且无人为错误。此外,还讨论并强调了人工智能在医学领域现有的挑战和局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46de/9885935/0fcd2930d145/44163_2023_49_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验