Suppr超能文献

一种用于发现液-液相分离蛋白质及其作用机制的双任务预测器。

A two-task predictor for discovering phase separation proteins and their undergoing mechanism.

机构信息

School of Science, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China.

College of Computer and Control Engineering, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin, 150040, China.

出版信息

Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae528.

Abstract

Liquid-liquid phase separation (LLPS) is one of the mechanisms mediating the compartmentalization of macromolecules (proteins and nucleic acids) in cells, forming biomolecular condensates or membraneless organelles. Consequently, the systematic identification of potential LLPS proteins is crucial for understanding the phase separation process and its biological mechanisms. A two-task predictor, Opt_PredLLPS, was developed to discover potential phase separation proteins and further evaluate their mechanism. The first task model of Opt_PredLLPS combines a convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) through a fully connected layer, where the CNN utilizes evolutionary information features as input, and BiLSTM utilizes multimodal features as input. If a protein is predicted to be an LLPS protein, it is input into the second task model to predict whether this protein needs to interact with its partners to undergo LLPS. The second task model employs the XGBoost classification algorithm and 37 physicochemical properties following a three-step feature selection. The effectiveness of the model was validated on multiple benchmark datasets, and in silico saturation mutagenesis was used to identify regions that play a key role in phase separation. These findings may assist future research on the LLPS mechanism and the discovery of potential phase separation proteins.

摘要

液-液相分离 (LLPS) 是介导细胞内大分子(蛋白质和核酸)区室化的机制之一,形成生物分子凝聚物或无膜细胞器。因此,系统地鉴定潜在的 LLPS 蛋白对于理解相分离过程及其生物学机制至关重要。开发了一种双任务预测器 Opt_PredLLPS,用于发现潜在的相分离蛋白,并进一步评估其机制。Opt_PredLLPS 的第一个任务模型通过全连接层将卷积神经网络 (CNN) 和双向长短期记忆 (BiLSTM) 结合在一起,其中 CNN 利用进化信息特征作为输入,BiLSTM 利用多模态特征作为输入。如果预测一个蛋白质是 LLPS 蛋白,则将其输入到第二个任务模型中,以预测该蛋白是否需要与其伴侣相互作用才能发生 LLPS。第二个任务模型采用 XGBoost 分类算法和 37 种物理化学性质,经过三步特征选择。该模型在多个基准数据集上进行了有效性验证,并通过计算机模拟饱和诱变来识别在相分离中起关键作用的区域。这些发现可能有助于未来对 LLPS 机制的研究和潜在相分离蛋白的发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9bd/11492799/637f8f4cff8d/bbae528f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验