Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany.
J Cardiovasc Magn Reson. 2023 Mar 28;25(1):22. doi: 10.1186/s12968-023-00921-4.
Different software programs are available for the evaluation of 4D Flow cardiovascular magnetic resonance (CMR). A good agreement of the results between programs is a prerequisite for the acceptance of the method. Therefore, the goal was to compare quantitative results from a cross-over comparison in individuals examined on two scanners of different vendors analyzed with four postprocessing software packages.
Eight healthy subjects (27 ± 3 years, 3 women) were each examined on two 3T CMR systems (Ingenia, Philips Healthcare; MAGNETOM Skyra, Siemens Healthineers) with a standardized 4D Flow CMR sequence. Six manually placed aortic contours were evaluated with Caas (Pie Medical Imaging, SW-A), cvi42 (Circle Cardiovascular Imaging, SW-B), GTFlow (GyroTools, SW-C), and MevisFlow (Fraunhofer Institute MEVIS, SW-D) to analyze seven clinically used parameters including stroke volume, peak flow, peak velocity, and area as well as typically scientifically used wall shear stress values. Statistical analysis of inter- and intrareader variability, inter-software and inter-scanner comparison included calculation of absolute and relative error (E), intraclass correlation coefficient (ICC), Bland-Altman analysis, and equivalence testing based on the assumption that inter-software differences needed to be within 80% of the range of intrareader differences.
SW-A and SW-C were the only software programs showing agreement for stroke volume (ICC = 0.96; E = 3 ± 8%), peak flow (ICC: 0.97; E = -1 ± 7%), and area (ICC = 0.81; E = 2 ± 22%). Results from SW-A/D and SW-C/D were equivalent only for area and peak flow. Other software pairs did not yield equivalent results for routinely used clinical parameters. Especially peak maximum velocity yielded poor agreement (ICC ≤ 0.4) between all software packages except SW-A/D that showed good agreement (ICC = 0.80). Inter- and intrareader consistency for clinically used parameters was best for SW-A and SW-D (ICC = 0.56-97) and worst for SW-B (ICC = -0.01-0.71). Of note, inter-scanner differences per individual tended to be smaller than inter-software differences.
Of all tested software programs, only SW-A and SW-C can be used equivalently for determination of stroke volume, peak flow, and vessel area. Irrespective of the applied software and scanner, high intra- and interreader variability for all parameters have to be taken into account before introducing 4D Flow CMR in clinical routine. Especially in multicenter clinical trials a single image evaluation software should be applied.
有多种不同的软件程序可用于评估 4D Flow 心血管磁共振(CMR)。程序间结果的良好一致性是该方法被接受的前提。因此,本研究的目的是比较在两个不同供应商的扫描仪上对 8 名健康受试者进行检查,并使用 4 种后处理软件包分析的交叉比较的定量结果。
8 名健康受试者(27±3 岁,3 名女性)分别在两台 3T CMR 系统(Ingenia,飞利浦医疗保健;MAGNETOM Skyra,西门子医疗)上进行标准化的 4D Flow CMR 序列检查。六个手动放置的主动脉轮廓使用 Caas(Pie Medical Imaging,SW-A)、cvi42(Circle Cardiovascular Imaging,SW-B)、GTFlow(GyroTools,SW-C)和 MevisFlow(Fraunhofer Institute MEVIS,SW-D)进行评估,以分析包括心排量、峰值流量、峰值速度和面积在内的 7 个临床常用参数,以及通常用于科学研究的壁面切应力值。使用绝对和相对误差(E)、组内相关系数(ICC)、Bland-Altman 分析和等效性检验(基于软件间差异需要在 80%的读者内差异范围内的假设)对阅读器内、阅读器间、软件间和扫描仪间的差异进行统计分析。
SW-A 和 SW-C 是唯一显示出心排量(ICC=0.96;E=3±8%)、峰值流量(ICC:0.97;E=-1±7%)和面积(ICC=0.81;E=2±22%)一致的软件程序。SW-A/D 和 SW-C/D 的结果仅在面积和峰值流量上等效。其他软件对的常用临床参数结果并不等效。特别是峰值最大速度在所有软件包之间的一致性都很差(ICC≤0.4),除了 SW-A/D 有较好的一致性(ICC=0.80)。在临床常用参数方面,SW-A 和 SW-D 的读者内和读者间一致性最好(ICC=0.56-97),SW-B 最差(ICC=-0.01-0.71)。值得注意的是,个体间的扫描仪差异往往小于软件间的差异。
在所测试的软件程序中,只有 SW-A 和 SW-C 可用于确定心排量、峰值流量和血管面积。在将 4D Flow CMR 引入临床常规之前,应考虑到所有参数的高读者内和读者间变异性,无论应用的软件和扫描仪如何。特别是在多中心临床试验中,应使用单一的图像评估软件。