Suppr超能文献

DropDAE:用于处理单细胞RNA测序数据中缺失值事件的基于对比学习的去噪自动编码器

DropDAE: Denosing Autoencoder with Contrastive Learning for Addressing Dropout Events in scRNA-seq Data.

作者信息

Juan Wanlin, Ahn Kwang Woo, Chen Yi-Guang, Lin Chien-Wei

机构信息

Division of Biostatistics, Data Science Institute, Medical College of Wisconsin (MCW), Milwaukee, WI 53226, USA.

Department of Pediatrics, Medical College of Wisconsin (MCW), Milwaukee, WI 53226, USA.

出版信息

Bioengineering (Basel). 2025 Jul 31;12(8):829. doi: 10.3390/bioengineering12080829.

Abstract

Single-cell RNA sequencing (scRNA-seq) has revolutionized molecular biology and genomics by enabling the profiling of individual cell types, providing insights into cellular heterogeneity. Deep learning methods have become popular in single cell analysis for tasks such as dimension reduction, cell clustering, and data imputation. In this work, we introduce DropDAE, a denoising autoencoder (DAE) model enhanced with contrastive learning, to specifically address the dropout events in scRNA-seq data, where certain genes show very low or even zero expression levels due to technical limitations. DropDAE uses the architecture of a denoising autoencoder to recover the underlying data patterns while leveraging contrastive learning to enhance group separation. Our extensive evaluations across multiple simulation settings based on synthetic data and a real-world dataset demonstrate that DropDAE not only reconstructs data effectively but also further improves clustering performance, outperforming existing methods in terms of accuracy and robustness.

摘要

单细胞RNA测序(scRNA-seq)通过对单个细胞类型进行分析,为深入了解细胞异质性提供了线索,从而彻底改变了分子生物学和基因组学。深度学习方法在单细胞分析中已广泛应用于降维、细胞聚类和数据插补等任务。在这项工作中,我们引入了DropDAE,这是一种通过对比学习增强的去噪自编码器(DAE)模型,专门用于处理scRNA-seq数据中的随机失活事件,即由于技术限制某些基因显示出非常低甚至零表达水平的情况。DropDAE利用去噪自编码器的架构来恢复潜在的数据模式,同时利用对比学习来增强组间分离。我们基于合成数据和真实数据集在多个模拟设置下进行的广泛评估表明,DropDAE不仅能有效地重建数据,还能进一步提高聚类性能,在准确性和鲁棒性方面优于现有方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a903/12383624/8d3adc075c14/bioengineering-12-00829-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验