Suppr超能文献

自闭症谱系障碍中能量缺乏的遗传学剖析

Genetic Dissection of Energy Deficiency in Autism Spectrum Disorder.

作者信息

Gargus John Jay

机构信息

Medical Genetics and Genomics-Pediatrics, Physiology & Biophysics, Founding Director Center for Autism Research and Translation, University of California, Irvine, CA 92697, USA.

NeuroQure, 15375 Baranca Parkway, Suite E-104, Irvine, CA 92618, USA.

出版信息

Genes (Basel). 2025 Jul 31;16(8):923. doi: 10.3390/genes16080923.

Abstract

: An important new consideration when studying autism spectrum disorder (ASD) is the bioenergetic mechanisms underlying the relatively recent rapid evolutionary expansion of the human brain, which pose fundamental risks for mitochondrial dysfunction and calcium signaling abnormalities and their potential role in ASD, as recently highlighted by insights from the BTBR mouse model of ASD. The rapid brain expansion taking place as evolved, particularly in the parietal lobe, led to increased energy demands, making the brain vulnerable to such metabolic disruptions as are seen in ASD. : Mitochondrial dysfunction in ASD is characterized by impaired oxidative phosphorylation, elevated lactate and alanine levels, carnitine deficiency, abnormal reactive oxygen species (ROS), and altered calcium homeostasis. These dysfunctions are primarily functional, rather than being due to mitochondrial DNA mutations. Calcium signaling plays a crucial role in neuronal ATP production, with disruptions in inositol 1,4,5-trisphosphate receptor (ITPR)-mediated endoplasmic reticulum (ER) calcium release being observed in ASD patient-derived cells. : This impaired signaling affects the ER-mitochondrial calcium axis, leading to mitochondrial energy deficiency, particularly in high-energy regions of the developing brain. The BTBR mouse model, with its unique gene mutation, exhibits core autism-like behaviors and metabolic syndromes, providing valuable insights into ASD pathophysiology. : Various interventions have been tested in BTBR mice, as in ASD, but none have directly targeted the mutation or its calcium signaling pathway. This review presents current genetic, biochemical, and neurological findings in ASD and its model systems, highlighting the need for further research into metabolic resilience and calcium signaling as potential diagnostic and therapeutic targets for ASD.

摘要

在研究自闭症谱系障碍(ASD)时,一个重要的新考虑因素是人类大脑相对近期快速进化扩张背后的生物能量机制,这给线粒体功能障碍和钙信号异常带来了根本风险,以及它们在ASD中的潜在作用,正如最近ASD的BTBR小鼠模型所揭示的那样。随着进化发生的快速大脑扩张,特别是在顶叶,导致能量需求增加,使大脑容易受到ASD中所见的此类代谢紊乱的影响。

ASD中的线粒体功能障碍的特征是氧化磷酸化受损、乳酸和丙氨酸水平升高、肉碱缺乏、活性氧(ROS)异常以及钙稳态改变。这些功能障碍主要是功能性的,而非由于线粒体DNA突变。钙信号在神经元ATP生成中起关键作用,在源自ASD患者的细胞中观察到肌醇1,4,5-三磷酸受体(ITPR)介导的内质网(ER)钙释放受到破坏。

这种受损的信号传导影响内质网-线粒体钙轴,导致线粒体能量缺乏,特别是在发育中大脑的高能量区域。具有独特基因突变的BTBR小鼠模型表现出核心的自闭症样行为和代谢综合征,为ASD病理生理学提供了有价值的见解。

与在ASD中一样,已经在BTBR小鼠中测试了各种干预措施,但没有一种直接针对该基因突变或其钙信号通路。本综述介绍了ASD及其模型系统中当前的遗传、生化和神经学发现,强调需要进一步研究代谢弹性和钙信号传导,作为ASD潜在的诊断和治疗靶点。

相似文献

1
Genetic Dissection of Energy Deficiency in Autism Spectrum Disorder.
Genes (Basel). 2025 Jul 31;16(8):923. doi: 10.3390/genes16080923.
2
Biomarkers of mitochondrial dysfunction in autism spectrum disorder: A systematic review and meta-analysis.
Neurobiol Dis. 2024 Jul;197:106520. doi: 10.1016/j.nbd.2024.106520. Epub 2024 May 3.
4
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
5
HERPUD1 governs tumor cell mitochondrial function via inositol 1,4,5-trisphosphate receptor-mediated calcium signaling.
Free Radic Biol Med. 2024 Feb 1;211:24-34. doi: 10.1016/j.freeradbiomed.2023.11.022. Epub 2023 Dec 2.
9
[Epigenetics' implication in autism spectrum disorders: A review].
Encephale. 2017 Aug;43(4):374-381. doi: 10.1016/j.encep.2016.07.007. Epub 2016 Sep 28.
10
Analysis of mitochondrial DNA replisome in autism spectrum disorder: Exploring the role of replisome genes.
Autism Res. 2025 May;18(5):933-953. doi: 10.1002/aur.3277. Epub 2024 Nov 29.

本文引用的文献

1
Design and structural basis of selective 1,4-dihydropyridine inhibitors of the calcium-activated potassium channel K3.1.
Proc Natl Acad Sci U S A. 2025 May 6;122(18):e2425494122. doi: 10.1073/pnas.2425494122. Epub 2025 Apr 28.
2
Cryo-EM structures of the small-conductance Ca-activated K2.2 channel.
Nat Commun. 2025 Apr 17;16(1):3690. doi: 10.1038/s41467-025-59061-1.
3
Glutamate gating of AMPA-subtype iGluRs at physiological temperatures.
Nature. 2025 May;641(8063):788-796. doi: 10.1038/s41586-025-08770-0. Epub 2025 Mar 26.
4
Contribution of autosomal rare and de novo variants to sex differences in autism.
Am J Hum Genet. 2025 Mar 6;112(3):599-614. doi: 10.1016/j.ajhg.2025.01.016. Epub 2025 Feb 14.
6
Assembly and architecture of endogenous NMDA receptors in adult cerebral cortex and hippocampus.
Cell. 2025 Mar 6;188(5):1198-1207.e13. doi: 10.1016/j.cell.2025.01.004. Epub 2025 Jan 23.
7
A multimodal neural signature of face processing in autism within the fusiform gyrus.
Nat Ment Health. 2025;3(1):31-45. doi: 10.1038/s44220-024-00349-4. Epub 2025 Jan 2.
8
Drug discovery targeting Na1.8: Structural insights and therapeutic potential.
Curr Opin Chem Biol. 2024 Dec;83:102538. doi: 10.1016/j.cbpa.2024.102538. Epub 2024 Oct 17.
9
Vocal communication in asocial BTBR mice is more malleable by a ketogenic diet in juveniles than adults.
Neuroscience. 2024 Nov 22;561:43-64. doi: 10.1016/j.neuroscience.2024.10.001. Epub 2024 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验