Suppr超能文献

通过超重和肥胖青年成人的营养模式和心理状态预测代谢和心血管健康:一种神经网络方法。

Predicting Metabolic and Cardiovascular Healthy from Nutritional Patterns and Psychological State Among Overweight and Obese Young Adults: A Neural Network Approach.

作者信息

Reivan Ortiz Geovanny Genaro, Maraver-Capdevila Laura, Granero Roser

机构信息

Faculty of Clinical Psychology, Catholic University of Cuenca, Cuenca 010107, Ecuador.

Department of Psychobiology and Methodology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.

出版信息

Nutrients. 2025 Aug 15;17(16):2651. doi: 10.3390/nu17162651.

Abstract

BACKGROUND AND OBJECTIVES

Overweight and obesity are global public health problems, as they increase the risk of chronic diseases, reduce quality of life, and generate a significant economic and healthcare burden. This study evaluates the capacity of nutritional patterns and psychological status to predict the presence of cardiometabolic risk among overweight and obese young adults, from a neural network approach.

METHOD

The study included = 188 overweight or obese students, who provided measures on their dietary intake, physical and psychological state, and sociodemographic profile. Neural networks were used to predict their metabolic status, classified into two categories based on anthropometric, biochemical, and cardiometabolic risk factors: metabolically unhealthy obesity (MUO) versus metabolically healthy obesity (MHO).

RESULTS

The predictive models demonstrated differences in specificity and sensitivity capacity depending on the criteria employed for the classification of MUO/MHO and gender. Among the female subsample, MUO was predicted by poor diet (low consumption of mineral and vitamins, and high consumption of fats and sodium) and high levels of depression and stress, while among the male subsample high body mass index (BMI), depression, and anxiety were the key factors. Protective factors associated to MHO were lower BMI, lower psychopathology distress and more balanced diets. Predictive models based on the HOMA-IR criterion yielded very high specificity and low sensibility (high capacity to identify MHO but low accuracy to identify MUO). The models based on the IDF criterion achieved excellent discriminative capacity for men (specificity and sensitivity around 92.5%), while the model for women obtained excellent sensitivity and low specificity.

CONCLUSIONS

The results provide empirical support for personalized prevention and treatment programs, accounting for individual differences with the aim of promoting healthy habits among young adults, especially during university education.

摘要

背景与目的

超重和肥胖是全球性公共卫生问题,因为它们会增加慢性病风险、降低生活质量,并产生巨大的经济和医疗负担。本研究从神经网络方法评估营养模式和心理状态预测超重和肥胖青年人心血管代谢风险存在情况的能力。

方法

该研究纳入了188名超重或肥胖学生,他们提供了饮食摄入、身体和心理状态以及社会人口学特征方面的测量数据。使用神经网络预测他们的代谢状态,根据人体测量、生化和心血管代谢风险因素分为两类:代谢不健康肥胖(MUO)与代谢健康肥胖(MHO)。

结果

预测模型显示,根据用于MUO/MHO分类的标准和性别,特异性和敏感性能力存在差异。在女性子样本中,MUO可通过不良饮食(矿物质和维生素摄入量低,脂肪和钠摄入量高)以及高水平的抑郁和压力来预测,而在男性子样本中,高体重指数(BMI)、抑郁和焦虑是关键因素。与MHO相关的保护因素是较低的BMI、较低的精神病理学困扰和更均衡的饮食。基于HOMA-IR标准的预测模型具有非常高的特异性和低敏感性(识别MHO的能力高,但识别MUO的准确性低)。基于IDF标准的模型对男性具有出色的判别能力(特异性和敏感性约为92.5%),而女性模型具有出色的敏感性和低特异性。

结论

研究结果为个性化预防和治疗方案提供了实证支持,考虑个体差异以促进年轻人养成健康习惯,特别是在大学教育期间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd4/12389217/4f78b03f63c9/nutrients-17-02651-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验