Suppr超能文献

基于机器学习利用可穿戴和智能手机传感器对帕金森病症状进行评估

Machine Learning-Based Assessment of Parkinson's Disease Symptoms Using Wearable and Smartphone Sensors.

作者信息

Gutowski Tomasz, Stodulska Olga, Ćwiklińska Aleksandra, Gutowska Katarzyna, Kopeć Kamila, Betka Marta, Antkiewicz Ryszard, Koziorowski Dariusz, Szlufik Stanisław

机构信息

Faculty of Cybernetics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland.

Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland.

出版信息

Sensors (Basel). 2025 Aug 9;25(16):4924. doi: 10.3390/s25164924.

Abstract

This study explores the use of machine learning models to assess the severity of Parkinson's disease symptoms based on data from wearable and smartphone sensors. It presents models to predict the severities of individual symptoms-tremor, bradykinesia, stiffness, and dyskinesia-as well as the overall state of patients, using both clinician and patient self-assessments as labels. The dataset, although limited and imbalanced, enabled the identification of key trends. The best performance was achieved when combining data from both the MYO armband and smartphone, and when using patient self-assessments as targets. Tremor was the most predictable symptom, while others proved more challenging-especially at higher severity levels, which were poorly represented in the dataset. These results highlight the value of multimodal data and the importance of patient input in symptom monitoring. However, they also point to the need for more balanced and extensive datasets to improve prediction accuracy across all severity levels and symptoms.

摘要

本研究探讨了基于可穿戴设备和智能手机传感器的数据,使用机器学习模型评估帕金森病症状的严重程度。它提出了一些模型,以预测个体症状(震颤、运动迟缓、僵硬和异动症)的严重程度以及患者的整体状态,使用临床医生和患者的自我评估作为标签。该数据集虽然有限且不均衡,但仍能识别出关键趋势。当结合MYO臂带和智能手机的数据,并以患者自我评估作为目标时,取得了最佳性能。震颤是最可预测的症状,而其他症状则更具挑战性,尤其是在较高严重程度水平时,数据集中对此类情况的呈现较少。这些结果凸显了多模态数据的价值以及患者输入在症状监测中的重要性。然而,它们也指出需要更平衡和广泛的数据集,以提高在所有严重程度水平和症状上的预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb68/12390236/3206f9bb4f3d/sensors-25-04924-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验