Kim Ha-Eun, Park Da-Hyeon, An Chan-Ho, Choi Myeong-Yoon, Kim Dongil, Hong Youn-Sik
Department of Computer Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea.
Department of Physics, Incheon National University, Incheon 22012, Republic of Korea.
Sensors (Basel). 2025 Aug 14;25(16):5047. doi: 10.3390/s25165047.
This study introduces GaitX, a real-time pedestrian behavior recognition system that leverages only the built-in sensors of a smartphone eliminating the need for external hardware. The system is capable of detecting abnormal walking behavior, such as using a smartphone while walking, regardless of whether the device is handheld or pocketed. GaitX applies multivariate time-series features derived from accelerometer data, using ensemble machine learning models like XGBoost and Random Forest for classification. Experimental validation across 21 subjects demonstrated an average classification accuracy of 92.3%, with notably high precision (97.1%) in identifying distracted walking. In addition to real-time detection, the system explores the link between gait variability and psychological traits by integrating MBTI personality profiling, revealing the potential for emotion-aware mobility analytics. Our findings offer a scalable, cost-effective solution for mobile safety applications and personalized health monitoring.
本研究介绍了GaitX,这是一种实时行人行为识别系统,它仅利用智能手机的内置传感器,无需外部硬件。该系统能够检测异常行走行为,例如走路时使用智能手机,无论设备是拿在手上还是放在口袋里。GaitX应用从加速度计数据中提取的多变量时间序列特征,使用XGBoost和随机森林等集成机器学习模型进行分类。对21名受试者的实验验证表明,平均分类准确率为92.3%,在识别分心行走方面具有显著的高精度(97.1%)。除了实时检测外,该系统还通过整合MBTI性格剖析来探索步态变异性与心理特征之间的联系,揭示了情感感知移动分析的潜力。我们的研究结果为移动安全应用和个性化健康监测提供了一种可扩展、经济高效的解决方案。