Suppr超能文献

从模拟智能手机使用的惯性测量单元(IMU)传感器中提取临床相关的时间步态参数。

Extraction of Clinically Relevant Temporal Gait Parameters from IMU Sensors Mimicking the Use of Smartphones.

作者信息

Larsen Aske G, Sadolin Line Ø, Thomsen Trine R, Oliveira Anderson S

机构信息

Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg Oest, Denmark.

Department of Materials and Production, Aalborg University, DK-9220 Aalborg Oest, Denmark.

出版信息

Sensors (Basel). 2025 Jul 18;25(14):4470. doi: 10.3390/s25144470.

Abstract

As populations age and workforces decline, the need for accessible health assessment methods grows. The merging of accessible and affordable sensors such as inertial measurement units (IMUs) and advanced machine learning techniques now enables gait assessment beyond traditional laboratory settings. A total of 52 participants walked at three speeds while carrying a smartphone-sized IMU in natural positions (hand, trouser pocket, or jacket pocket). A previously trained Convolutional Neural Network and Long Short-Term Memory (CNN-LSTM)-based machine learning model predicted gait events, which were then used to calculate stride time, stance time, swing time, and double support time. Stride time predictions were highly accurate (<5% error), while stance and swing times exhibited moderate variability and double support time showed the highest errors (>20%). Despite these variations, moderate-to-strong correlations between the predicted and experimental spatiotemporal gait parameters suggest the feasibility of IMU-based gait tracking in real-world settings. These associations preserved inter-subject patterns that are relevant for detecting gait disorders. Our study demonstrated the feasibility of extracting clinically relevant gait parameters using IMU data mimicking smartphone use, especially parameters with longer durations such as stride time. Robustness across sensor locations and walking speeds supports deep learning on single-IMU data as a viable tool for remote gait monitoring.

摘要

随着人口老龄化和劳动力减少,对便捷健康评估方法的需求不断增加。诸如惯性测量单元(IMU)等便捷且经济实惠的传感器与先进机器学习技术的融合,使得在传统实验室环境之外也能够进行步态评估。共有52名参与者在自然位置(手部、裤兜或夹克兜)携带智能手机大小的IMU以三种速度行走。一个先前训练好的基于卷积神经网络和长短期记忆(CNN-LSTM)的机器学习模型预测步态事件,然后用于计算步幅时间、站立时间、摆动时间和双支撑时间。步幅时间预测高度准确(误差<5%),而站立和摆动时间表现出中等变异性,双支撑时间误差最高(>20%)。尽管存在这些差异,但预测的和实验的时空步态参数之间的中等到强相关性表明在现实环境中基于IMU的步态跟踪是可行的。这些关联保留了与检测步态障碍相关的个体间模式。我们的研究证明了使用模拟智能手机使用的IMU数据提取临床相关步态参数的可行性,特别是步幅时间等持续时间较长的参数。跨传感器位置和行走速度的稳健性支持将基于单IMU数据的深度学习作为远程步态监测的可行工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验