Suppr超能文献

从心电图和光电容积脉搏波图中提取呼吸率的技术比较。

Comparison of Techniques for Respiratory Rate Extraction from Electrocardiogram and Photoplethysmogram.

作者信息

Ponsiglione Alfonso Maria, Russo Michela, Petrellese Maria Giovanna, Letizia Annalisa, Tufano Vincenza, Ricciardi Carlo, Tedesco Annarita, Amato Francesco, Romano Maria

机构信息

Department of Electrical Engineering and Information Technology, University of Naples Federico II, Via Claudio 22, 80125 Naples, Italy.

Neurological Clinic of Hospital San Giovanni di Dio and Ruggi d'Aragona, Via San Leonardo, 80132 Salerno, Italy.

出版信息

Sensors (Basel). 2025 Aug 19;25(16):5136. doi: 10.3390/s25165136.

Abstract

BACKGROUND

Respiratory rate (RR) is a key vital sign and one of the most sensitive indicators of physiological conditions, playing a crucial role in the early identification of clinical deterioration. The monitoring of RR using electrocardiography (ECG) and photoplethysmography (PPG) aims to overcome limitations of traditional methods in clinical settings.

METHODS

The proposed approach extracts RR from ECG and PPG signals using different morphological and temporal features from publicly available datasets (iAMwell and Capnobase). The algorithm was used to develop and test with a selection of relevant ECG (e.g., R-peak, QRS area, and QRS slope) and PPG (amplitude and frequency modulation) characteristics.

RESULTS

The results show promising performance, with the ECG-derived signal using the R-peak-based method yielding the lowest error, with a mean absolute error of 0.99 breaths/min in the iAMwell dataset and 3.07 breaths/min in the Capnobase dataset. In comparison, the RR PPG-derived signal showed higher errors of 5.10 breaths/min in the iAMwell dataset and 10.66 breaths/min in the Capnobase dataset, for the FM and AM method, respectively. Bland-Altman analysis revealed a small negative bias, approximately -0.97 breaths/min for the iAMwell dataset (with limits of agreement from -2.62 to 0.95) and -1.16 breaths/min for the Capnobase dataset (limits of agreement from -3.37 to 1.10) in the intra-subject analysis. In the inter-subject analysis, the bias was -0.84 breaths/min (limits of agreement from -1.76 to 0.20) for iAMwell and -1.22 breaths/min (limits of agreement from -7.91 to 5.35) for Capnobase, indicating a slight underestimation. Conversely, the PPG-derived signal tended to overestimate RR, resulting in higher variability and reduced accuracy. These findings highlight the higher reliability of ECG-derived features for RR estimation in the analyzed datasets.

CONCLUSION

This study suggests that the proposed approach could guide the design of cost-effective, non-invasive methods for continuous respiration monitoring, offering a reliable tool for detecting conditions like stress, anxiety, and sleep disorders.

摘要

背景

呼吸频率(RR)是一项关键生命体征,也是生理状况最敏感的指标之一,在临床病情恶化的早期识别中起着至关重要的作用。利用心电图(ECG)和光电容积脉搏波描记法(PPG)监测RR旨在克服临床环境中传统方法的局限性。

方法

所提出的方法利用公开可用数据集(iAMwell和Capnobase)中不同的形态学和时间特征从ECG和PPG信号中提取RR。该算法用于开发并测试一系列相关的ECG(例如R波峰、QRS波面积和QRS波斜率)和PPG(幅度和频率调制)特征。

结果

结果显示出良好的性能,基于R波峰的方法从ECG得出的信号误差最低,在iAMwell数据集中平均绝对误差为0.99次呼吸/分钟,在Capnobase数据集中为3.07次呼吸/分钟。相比之下,对于FM和AM方法,从PPG得出的RR信号在iAMwell数据集中误差较高,为5.10次呼吸/分钟,在Capnobase数据集中为10.66次呼吸/分钟。Bland-Altman分析显示存在较小的负偏差,在个体内分析中,iAMwell数据集约为-0.97次呼吸/分钟(一致性界限为-2.62至0.95),Capnobase数据集为-1.16次呼吸/分钟(一致性界限为-3.37至1.10)。在个体间分析中,iAMwell的偏差为-0.84次呼吸/分钟(一致性界限为-1.76至0.20),Capnobase为-1.22次呼吸/分钟(一致性界限为-7.91至5.35),表明存在轻微低估。相反,从PPG得出的信号往往高估RR,导致变异性更高且准确性降低。这些发现突出了在分析数据集中从ECG得出的特征用于RR估计的更高可靠性。

结论

本研究表明,所提出的方法可为设计经济高效的无创连续呼吸监测方法提供指导,为检测压力、焦虑和睡眠障碍等状况提供可靠工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c97/12390036/3464fd7955ad/sensors-25-05136-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验