Song Yuze, Xie Xinzhe, Guo Buyu, Xiong Xiaofei, Li Peiliang
National Ocean Technology Center, Tianjin 300112, China.
Key Laboratory of Ocean Observation Technology, Ministry of National Resources, Tianjin 300112, China.
Sensors (Basel). 2025 Aug 19;25(16):5146. doi: 10.3390/s25165146.
Limited depth of field in modern optical imaging systems often results in partially focused images. Multi-focus image fusion (MFF) addresses this by synthesizing an all-in-focus image from multiple source images captured at different focal planes. While deep learning-based MFF methods have shown promising results, existing approaches face significant challenges. Convolutional Neural Networks (CNNs) often struggle to capture long-range dependencies effectively, while Transformer and Mamba-based architectures, despite their strengths, suffer from high computational costs and rigid input size constraints, frequently necessitating patch-wise fusion during inference-a compromise that undermines the realization of a true global receptive field. To overcome these limitations, we propose MLP-MFF, a novel lightweight, end-to-end MFF network built upon the Pyramid Fusion Multi-Layer Perceptron (PFMLP) architecture. MLP-MFF is specifically designed to handle flexible input scales, efficiently learn multi-scale feature representations, and capture critical long-range dependencies. Furthermore, we introduce a Dual-Path Adaptive Multi-scale Feature-Fusion Module based on Hybrid Attention (DAMFFM-HA), which adaptively integrates hybrid attention mechanisms and allocates weights to optimally fuse multi-scale features, thereby significantly enhancing fusion performance. Extensive experiments on public multi-focus image datasets demonstrate that our proposed MLP-MFF achieves competitive, and often superior, fusion quality compared to current state-of-the-art MFF methods, all while maintaining a lightweight and efficient architecture.
现代光学成像系统中有限的景深常常导致图像部分对焦。多聚焦图像融合(MFF)通过从在不同焦平面捕获的多个源图像合成一个全对焦图像来解决这个问题。虽然基于深度学习的MFF方法已经显示出有前景的结果,但现有方法面临重大挑战。卷积神经网络(CNN)常常难以有效捕捉长距离依赖关系,而基于Transformer和曼巴的架构尽管有其优势,但存在高计算成本和严格的输入大小限制,在推理过程中经常需要逐块融合——这是一种妥协,破坏了真正全局感受野的实现。为了克服这些限制,我们提出了MLP-MFF,这是一种基于金字塔融合多层感知器(PFMLP)架构构建的新型轻量级端到端MFF网络。MLP-MFF专门设计用于处理灵活的输入尺度,有效学习多尺度特征表示,并捕捉关键的长距离依赖关系。此外,我们引入了基于混合注意力的双路径自适应多尺度特征融合模块(DAMFFM-HA),它自适应地集成混合注意力机制并分配权重以最佳融合多尺度特征,从而显著提高融合性能。在公共多聚焦图像数据集上进行的大量实验表明,我们提出的MLP-MFF与当前最先进的MFF方法相比,实现了具有竞争力且通常更优的融合质量,同时保持了轻量级和高效的架构。