Suppr超能文献

平衡准确性与计算效率:一种基于前景-背景分割的空间注意力机制的更快R-CNN用于野生植物识别

Balancing Accuracy and Computational Efficiency: A Faster R-CNN with Foreground-Background Segmentation-Based Spatial Attention Mechanism for Wild Plant Recognition.

作者信息

Cui Zexuan, Chen Zhibo, Cui Xiaohui

机构信息

College of Information Science and Technology, Beijing Forestry University, Beijing 100083, China.

Engineering Research Center for Forestry-Oriented Intelligent Information Processing of National Forestry and Grassland Administration, Beijing 100083, China.

出版信息

Plants (Basel). 2025 Aug 14;14(16):2533. doi: 10.3390/plants14162533.

Abstract

Computer vision recognition technology, due to its non-invasive and convenient nature, can effectively avoid damage to fragile wild plants during recognition. However, balancing model complexity, recognition accuracy, and data processing difficulty on resource-constrained hardware is a critical issue that needs to be addressed. To tackle these challenges, we propose an improved lightweight Faster R-CNN architecture named ULS-FRCN. This architecture includes three key improvements: a Light Bottleneck module based on depthwise separable convolution to reduce model complexity; a Split SAM lightweight spatial attention mechanism to improve recognition accuracy without increasing model complexity; and unsharp masking preprocessing to enhance model performance while reducing data processing difficulty and training costs. We validated the effectiveness of ULS-FRCN using five representative wild plants from the PlantCLEF 2015 dataset. Ablation experiments and multi-dataset generalization tests show that ULS-FRCN significantly outperforms the baseline model in terms of mAP, mean F1 score, and mean recall, with improvements of 12.77%, 0.01, and 9.07%, respectively. Compared to the original Faster R-CNN, our lightweight design and attention mechanism reduce training parameters, improve inference speed, and enhance computational efficiency. This approach is suitable for deployment on resource-constrained forestry devices, enabling efficient plant identification and management without the need for high-performance servers.

摘要

计算机视觉识别技术因其非侵入性和便捷性,在识别过程中能够有效避免对脆弱野生植物造成损害。然而,在资源受限的硬件上平衡模型复杂度、识别准确率和数据处理难度是一个需要解决的关键问题。为应对这些挑战,我们提出了一种名为ULS - FRCN的改进型轻量级Faster R - CNN架构。该架构包含三项关键改进:基于深度可分离卷积的轻量级瓶颈模块,以降低模型复杂度;拆分式SAM轻量级空间注意力机制,在不增加模型复杂度的情况下提高识别准确率;以及非锐化掩膜预处理,在降低数据处理难度和训练成本的同时提升模型性能。我们使用来自PlantCLEF 2015数据集的五种代表性野生植物验证了ULS - FRCN的有效性。消融实验和多数据集泛化测试表明,ULS - FRCN在平均精度均值(mAP)、平均F1分数和平均召回率方面显著优于基线模型,分别提高了12.77%、0.01和9.07%。与原始的Faster R - CNN相比,我们的轻量级设计和注意力机制减少了训练参数,提高了推理速度,并增强了计算效率。这种方法适用于在资源受限的林业设备上进行部署,无需高性能服务器即可实现高效的植物识别和管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0d/12389633/8414e1065d94/plants-14-02533-g009.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验