Xu Weiwang, Zhang Houdao, Ji Lingjing, Li Zhongyu
Shanghai Precision Measurement Semiconductor Technology, Inc., Shanghai 210700, China.
Micromachines (Basel). 2025 Jul 22;16(8):838. doi: 10.3390/mi16080838.
As semiconductor manufacturing advances into the angstrom-scale era characterized by three-dimensional integration, conventional metrology technologies face fundamental limitations regarding accuracy, speed, and non-destructiveness. Although optical spectroscopy has emerged as a prominent research focus, its application in complex manufacturing scenarios continues to confront significant technical barriers. This review establishes three concrete objectives: To categorize AI-optical spectroscopy integration paradigms spanning forward surrogate modeling, inverse prediction, physics-informed neural networks (PINNs), and multi-level architectures; to benchmark their efficacy against critical industrial metrology challenges including tool-to-tool (T2T) matching and high-aspect-ratio (HAR) structure characterization; and to identify unresolved bottlenecks for guiding next-generation intelligent semiconductor metrology. By categorically elaborating on the innovative applications of AI algorithms-such as forward surrogate models, inverse modeling techniques, physics-informed neural networks (PINNs), and multi-level network architectures-in optical spectroscopy, this work methodically assesses the implementation efficacy and limitations of each technical pathway. Through actual application case studies involving J-profiler software 5.0 and associated algorithms, this review validates the significant efficacy of AI technologies in addressing critical industrial challenges, including tool-to-tool (T2T) matching. The research demonstrates that the fusion of AI and optical spectroscopy delivers technological breakthroughs for semiconductor metrology; however, persistent challenges remain concerning data veracity, insufficient datasets, and cross-scale compatibility. Future research should prioritize enhancing model generalization capability, optimizing data acquisition and utilization strategies, and balancing algorithm real-time performance with accuracy, thereby catalyzing the transformation of semiconductor manufacturing towards an intelligence-driven advanced metrology paradigm.
随着半导体制造进入以三维集成为特征的埃米尺度时代,传统计量技术在精度、速度和无损性方面面临着根本性的限制。尽管光谱学已成为一个突出的研究重点,但其在复杂制造场景中的应用仍面临重大技术障碍。本综述确立了三个具体目标:对人工智能与光谱学的集成范式进行分类,包括正向替代建模、反向预测、物理信息神经网络(PINNs)和多级架构;针对包括工具间(T2T)匹配和高纵横比(HAR)结构表征在内的关键工业计量挑战,对它们的有效性进行基准测试;识别未解决的瓶颈,以指导下一代智能半导体计量。通过分类阐述人工智能算法(如正向替代模型、反向建模技术、物理信息神经网络(PINNs)和多级网络架构)在光谱学中的创新应用,本工作系统地评估了每条技术途径的实施效果和局限性。通过涉及J-profiler软件5.0及相关算法的实际应用案例研究,本综述验证了人工智能技术在应对包括工具间(T2T)匹配在内的关键工业挑战方面的显著效果。研究表明,人工智能与光谱学的融合为半导体计量带来了技术突破;然而,在数据准确性、数据集不足和跨尺度兼容性方面仍存在持续挑战。未来的研究应优先提高模型的泛化能力,优化数据采集和利用策略,并在算法实时性能和准确性之间取得平衡,从而推动半导体制造向智能驱动的先进计量范式转变。