Suppr超能文献

用于微流控双水相系统装置的细胞分配设计:一种使用软骨细胞和模型微粒的动态能量策略及计算

Cell Partitioning Design for Microfluidic ATPS Devices: A Dynamic Energy Strategy and Calculation Using Chondrocytes and Model Microparticles.

作者信息

Garibaldi Gabriel, Alegria Jimena, Shayan Anita, Stannert Robert, Abu-Lail Nehal I, Sun Gongchen

机构信息

Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.

出版信息

Micromachines (Basel). 2025 Aug 12;16(8):926. doi: 10.3390/mi16080926.

Abstract

Sorting and isolating specific cells from heterogeneous populations are crucial for many biomedical applications, including drug discovery and medical diagnostics. Conventional methods such as Fluorescent Activated Cell Sorting (FACS) and Magnetic Activated Cell Sorting (MACS) face limitations in throughput, cost, and the ability to separate subtly different cells. Cell partitioning in Aqueous Two-Phase Systems (ATPSs) offers a biocompatible and cost-effective alternative, particularly when combined with continuous-flow microfluidics. However, it remains challenging to rationally design microfluidic ATPS devices and operation to separate cells with similar origin but different phenotypes. In this paper, using a model ATPS, polyethylene glycol (PEG)-Dextran (Dex) system, and model cells, human chondrocytes (hChs), and carboxylated polystyrene (PS) microparticles, we systematically characterized the material properties affecting cell partitioning in ATPSs, such as surface energies of the solutions and cells and solution viscosities. We developed an energy balance approach between interfacial energy and viscous dissipation to estimate the interface translocation dynamic of cells partitioning into the preferred phase. Combining the experimental measurement and the energy balance model, our calculation reveals that the time required for complete cell partitioning at the ATPS interface can be exploited in microfluidic ATPS devices to separate hChs with different phenotypes (healthy and diseased). We expect our dynamic energy approach to provide a basis and a design strategy for optimizing microfluidic ATPS devices to achieve the efficient separation of phenotypically similar cell populations and further expand the potential of microfluidic cell separation.

摘要

从异质群体中分选和分离特定细胞对于许多生物医学应用至关重要,包括药物发现和医学诊断。传统方法如荧光激活细胞分选(FACS)和磁性激活细胞分选(MACS)在通量、成本以及分离细微不同细胞的能力方面存在局限性。水相双相系统(ATPSs)中的细胞分配提供了一种生物相容性好且成本效益高的替代方法,特别是与连续流微流体相结合时。然而,合理设计微流体ATPS装置及其操作以分离具有相似起源但不同表型的细胞仍然具有挑战性。在本文中,我们使用模型ATPS(聚乙二醇(PEG)-葡聚糖(Dex)系统)、模型细胞(人软骨细胞(hChs))和羧化聚苯乙烯(PS)微粒,系统地表征了影响ATPSs中细胞分配的材料特性,如溶液和细胞的表面能以及溶液粘度。我们开发了一种界面能与粘性耗散之间的能量平衡方法,以估计细胞分配到优选相时的界面迁移动力学。结合实验测量和能量平衡模型,我们的计算表明,在微流体ATPS装置中,可以利用细胞在ATPS界面完全分配所需的时间来分离具有不同表型(健康和患病)的hChs。我们期望我们的动态能量方法为优化微流体ATPS装置提供基础和设计策略,以实现表型相似细胞群体的高效分离,并进一步拓展微流体细胞分离的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf9b/12388751/2b051265b4a5/micromachines-16-00926-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验