Pan Di, Jia Fanghui, Zhou Muyuan, Liu Hao, Yan Jingru, Zhu Lisong, Yang Ming, Jiang Zhengyi
School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
Graduate School of System Design, Tokyo Metropolitan University, 6-6-Asahigaoka, Hino 191-0055, Japan.
Micromachines (Basel). 2025 Aug 15;16(8):940. doi: 10.3390/mi16080940.
Stainless steel is essential in high-performance industries due to its strength, corrosion resistance, and biocompatibility. However, conventional manufacturing methods limit material efficiency, design complexity, and customization. Additive manufacturing (AM) has emerged as a powerful alternative, enabling the production of stainless-steel components with complex geometries, tailored microstructures, and integrated functionalities. Key AM methodologies, including laser powder bed fusion (L-PBF), binder jetting, and directed energy deposition (DED), are evaluated for their effectiveness in producing stainless-steel components with optimal performance characteristics. This review highlights innovations in stainless-steel AM, focusing on microfabrication, multi-material approaches, and post-processing strategies such as heat treatment, hot isostatic pressing (HIP), and surface finishing. It also examines the impact of process parameters on microstructure, mechanical anisotropy, and defects. Emerging trends include AM-specific alloy design, functionally graded structures, and AI-based control. Applications span biomedical implants, micro-tooling, energy systems, and automotive parts, with emphasis on microfabrication for biomedical micromachines and precision microforming.
不锈钢因其强度、耐腐蚀性和生物相容性,在高性能行业中至关重要。然而,传统制造方法限制了材料效率、设计复杂性和定制性。增材制造(AM)已成为一种强大的替代方法,能够生产具有复杂几何形状、定制微观结构和集成功能的不锈钢部件。对包括激光粉末床熔融(L-PBF)、粘结剂喷射和定向能量沉积(DED)在内的关键增材制造方法,在生产具有最佳性能特征的不锈钢部件方面的有效性进行了评估。本综述重点介绍了不锈钢增材制造方面的创新,着重于微制造、多材料方法以及诸如热处理、热等静压(HIP)和表面处理等后处理策略。它还研究了工艺参数对微观结构、机械各向异性和缺陷的影响。新兴趋势包括特定于增材制造的合金设计、功能梯度结构和基于人工智能的控制。应用范围涵盖生物医学植入物、微工具、能源系统和汽车零部件,尤其侧重于生物医学微机器的微制造和精密微成型。