Suppr超能文献

常规与人工智能辅助解读急诊急性呼吸道症状患者胸片的比较:一项实用随机临床试验。

Conventional Versus Artificial Intelligence-Assisted Interpretation of Chest Radiographs in Patients With Acute Respiratory Symptoms in Emergency Department: A Pragmatic Randomized Clinical Trial.

机构信息

Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.

Cancer Research Institute, Seoul National University, Seoul, Korea.

出版信息

Korean J Radiol. 2023 Mar;24(3):259-270. doi: 10.3348/kjr.2022.0651. Epub 2023 Feb 6.

Abstract

OBJECTIVE

It is unknown whether artificial intelligence-based computer-aided detection (AI-CAD) can enhance the accuracy of chest radiograph (CR) interpretation in real-world clinical practice. We aimed to compare the accuracy of CR interpretation assisted by AI-CAD to that of conventional interpretation in patients who presented to the emergency department (ED) with acute respiratory symptoms using a pragmatic randomized controlled trial.

MATERIALS AND METHODS

Patients who underwent CRs for acute respiratory symptoms at the ED of a tertiary referral institution were randomly assigned to intervention group (with assistance from an AI-CAD for CR interpretation) or control group (without AI assistance). Using a commercial AI-CAD system (Lunit INSIGHT CXR, version 2.0.2.0; Lunit Inc.). Other clinical practices were consistent with standard procedures. Sensitivity and false-positive rates of CR interpretation by duty trainee radiologists for identifying acute thoracic diseases were the primary and secondary outcomes, respectively. The reference standards for acute thoracic disease were established based on a review of the patient's medical record at least 30 days after the ED visit.

RESULTS

We randomly assigned 3576 participants to either the intervention group (1761 participants; mean age ± standard deviation, 65 ± 17 years; 978 males; acute thoracic disease in 472 participants) or the control group (1815 participants; 64 ± 17 years; 988 males; acute thoracic disease in 491 participants). The sensitivity (67.2% [317/472] in the intervention group vs. 66.0% [324/491] in the control group; odds ratio, 1.02 [95% confidence interval, 0.70-1.49]; = 0.917) and false-positive rate (19.3% [249/1289] vs. 18.5% [245/1324]; odds ratio, 1.00 [95% confidence interval, 0.79-1.26]; = 0.985) of CR interpretation by duty radiologists were not associated with the use of AI-CAD.

CONCLUSION

AI-CAD did not improve the sensitivity and false-positive rate of CR interpretation for diagnosing acute thoracic disease in patients with acute respiratory symptoms who presented to the ED.

摘要

目的

目前尚不清楚人工智能辅助计算机辅助检测(AI-CAD)是否能提高真实临床环境下胸片(CR)判读的准确性。我们旨在通过一项实用的随机对照试验,比较 AI-CAD 辅助 CR 解读与传统解读在因急性呼吸道症状就诊于急诊科(ED)的患者中的准确性。

材料和方法

在一家三级转诊机构的 ED 接受 CR 检查的因急性呼吸道症状就诊的患者被随机分配至干预组(使用 AI-CAD 辅助 CR 解读)或对照组(无 AI 辅助)。使用商业 AI-CAD 系统(Lunit INSIGHT CXR,版本 2.0.2.0;Lunit Inc.)。其他临床实践与标准程序一致。受训放射科医师判读 CR 以识别急性胸部疾病的敏感性和假阳性率分别为主要和次要结局。急性胸部疾病的参考标准是基于 ED 就诊后至少 30 天对患者病历的回顾确定的。

结果

我们将 3576 名参与者随机分配至干预组(1761 名参与者;平均年龄 ± 标准差,65 ± 17 岁;978 名男性;472 名参与者有急性胸部疾病)或对照组(1815 名参与者;64 ± 17 岁;988 名男性;491 名参与者有急性胸部疾病)。干预组(317/472)和对照组(324/491)中 CR 判读的敏感性(67.2% [472 例中的 317 例] vs. 66.0% [491 例中的 324 例];比值比,1.02 [95%置信区间,0.70-1.49]; = 0.917)和假阳性率(19.3% [1289 例中的 249 例] vs. 18.5% [1324 例中的 245 例];比值比,1.00 [95%置信区间,0.79-1.26]; = 0.985)与 AI-CAD 的使用无关。

结论

在因急性呼吸道症状就诊于 ED 的患者中,AI-CAD 并未提高 CR 诊断急性胸部疾病的敏感性和假阳性率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4cf/9971841/8f0059138343/kjr-24-259-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验