Roth Jake, Cui Ying
Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, MN 55414, USA.
Department of Industrial Engineering and Operations Research, University of California, Berkeley, Berkeley, CA 94720, USA.
Math Program Comput. 2025 Jun;17(2):307-348. doi: 10.1007/s12532-024-00273-9. Epub 2025 Jan 8.
The operator computes the sum of the largest components of a given vector. The Euclidean projection onto the top- -sum sublevel set serves as a crucial subroutine in iterative methods to solve composite superquantile optimization problems. In this paper, we introduce a solver that implements two finite-termination algorithms to compute this projection. Both algorithms have complexity of floating point operations when applied to a sorted -dimensional input vector, where the absorbed constant . This stands in contrast to an existing grid-search-inspired method that has complexity, a partition-based method with complexity, where is the number of distinct elements in the input vector, and a semismooth Newton method with a finite termination property but unspecified floating point complexity. The improvement of our methods over the first method is significant when is linearly dependent on , which is frequently encountered in practical superquantile optimization applications. In instances where the input vector is unsorted, an additional cost is incurred to (partially) sort the vector, whereas a full sort of the input vector seems unavoidable for the other two methods. To reduce this cost, we further derive a rigorous procedure that leverages approximate sorting to compute the projection, which is particularly useful when solving a sequence of similar projection problems. Numerical results show that our methods solve problems of scale and within 0.05 s, whereas the most competitive alternative, the semismooth Newton-based method, takes about 1 s. The existing grid-search method and Gurobi's QP solver can take from minutes to hours.
该算子计算给定向量的最大 个分量之和。到前 和次水平集上的欧几里得投影是求解复合超分位数优化问题的迭代方法中的一个关键子例程。在本文中,我们介绍了一种求解器,它实现了两种有限终止算法来计算此投影。当应用于排序后的 维输入向量时,这两种算法的浮点运算复杂度均为 ,其中吸收常数 。这与现有的受网格搜索启发的方法形成对比,后者的复杂度为 ,还有一种基于分区的方法,其复杂度为 ,其中 是输入向量中不同元素的数量,以及一种具有有限终止性质但未指定浮点复杂度的半光滑牛顿法。当 与 线性相关时,我们的方法相对于第一种方法的改进非常显著,这在实际的超分位数优化应用中经常遇到。在输入向量未排序的情况下,对向量进行(部分)排序会产生额外成本,而对于其他两种方法,似乎不可避免地要对输入向量进行完全排序。为了降低这一成本,我们进一步推导了一种利用近似排序来计算投影的严格程序,这在解决一系列类似的投影问题时特别有用。数值结果表明,我们的方法在 0.05 秒内解决了规模为 和 的问题,而最具竞争力的替代方法,即基于半光滑牛顿法的方法,大约需要 1 秒。现有的网格搜索方法和 Gurobi 的 QP 求解器可能需要几分钟到几小时。