Suppr超能文献

基于运动想象的脑机接口:对Emotiv EPOC X基于多类运动想象的控制的探索。

Motor imagery-based brain-computer interfaces: an exploration of multiclass motor imagery-based control for Emotiv EPOC X.

作者信息

Tarara Paulina, Przybył Iwona, Schöning Julius, Gunia Artur

机构信息

Multigraphical Creation Studio, Academy of Fine Arts and Design in Katowice, Katowice, Poland.

Business Service Galop, Katowice, Poland.

出版信息

Front Neuroinform. 2025 Aug 12;19:1625279. doi: 10.3389/fninf.2025.1625279. eCollection 2025.

Abstract

INTRODUCTION

Enhancing the command capacity of motor imagery (MI)-based brain-computer interfaces (BCIs) remains a significant challenge in neuroinformatics, especially for real-world assistive applications. This study explores a multiclass BCI system designed to classify multiple MI tasks using a low-cost EEG device.

METHODS

A BCI system was developed to classify six mental states: resting state, left and right hand movement imagery, tongue movement, and left and right lateral bending, using EEG data collected with the Emotiv EPOC X headset. Seven participants underwent a body awareness training protocol integrating mindfulness and physical exercises to improve MI performance. Machine learning techniques were applied to extract discriminative features from the EEG signals.

RESULTS

Post-training assessments indicated modest improvements in participants' MI proficiency. However, classification performance was limited due to inter- and intra-subject signal variability and the technical constraints of the consumer-grade EEG hardware.

DISCUSSION

These findings highlight the value of combining user training with MI-based BCIs and the need to optimize signal quality for reliable performance. The results support the feasibility of scalable, multiclass MI paradigms in low-cost, user-centered neurotechnology applications, while pointing to critical areas for future system enhancement.

摘要

引言

提高基于运动想象(MI)的脑机接口(BCI)的指令能力仍然是神经信息学中的一项重大挑战,特别是对于实际的辅助应用而言。本研究探索了一种多类BCI系统,该系统旨在使用低成本脑电图(EEG)设备对多个MI任务进行分类。

方法

开发了一种BCI系统,用于使用Emotiv EPOC X头戴式设备收集的EEG数据对六种心理状态进行分类:静息状态、左手和右手运动想象、舌头运动以及左右侧弯。七名参与者接受了一项将正念与体育锻炼相结合的身体意识训练方案,以提高MI表现。应用机器学习技术从EEG信号中提取判别特征。

结果

训练后评估表明参与者的MI熟练程度有适度提高。然而,由于个体间和个体内信号变异性以及消费级EEG硬件的技术限制,分类性能有限。

讨论

这些发现凸显了将用户训练与基于MI的BCI相结合的价值,以及为实现可靠性能而优化信号质量的必要性。结果支持了在低成本、以用户为中心的神经技术应用中可扩展的多类MI范式的可行性,同时指出了未来系统增强的关键领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cac/12378764/d6d57bc0f561/fninf-19-1625279-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验